簡易檢索 / 詳目顯示

研究生: 黃麟智
Lin-Chih Huang
論文名稱: 光捕捉高分子穿透式奈米碳管網路系統
Light-harvesting Polymers on Percolated Carbon Nanotubes
指導教授: 楊長謀
Arnold C.-M. Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 64
中文關鍵詞: 奈米碳管太陽能電池光電高分子
外文關鍵詞: Carbon nanotube, Soar cell, Light-harvesting polymer
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Carbon nanotubes (CNTs) are promising electronic materials, which possess excellent electrical conductivity and great aspect ratios. The CNTs embedded in conjugated polymer host can provide unimpeded paths for electron transport. In this polymer/CNT nanocomposite, excitons were generated on conjugated polymers under illumination and were dissociated at the interfaces of polymer/CNT due to photo-induced electron transfer (PET), where electrons were transported by CNTs and holes were transported through conjugated polymers. In order to explore optoelectronic properties between nanotubes and conjugated polymers in a nanoscale regime, a novel photoelectric material that poly (2-methoxy-5-(2’-ethylhexyloxy)-1, 4-phenylene vinylene) (MEH-PPV) chains grafted with multi-walled carbon nanotubes (MWCNTs) was synthesized via a surface grafting method. The (MEH-PPV)-grafted MWCNTs upon illumination exhibited photo-excited phenomenon and generated significant photocurrents. A Schottky model was used to interpret the observed effect due to variation of the band gap of MEH-PPV and generation of photocurrents. The effect of coating thickness of MEH-PPV was revealed that thicker MEH-PPV enhances larger photocurrent and decreases the occurrence of short circuit. Properties of the organic film solar cell (OSC), where the (MEH-PPV)-grafted MWCNTs was used as the photoactive layer, were also investigated in this research. The preliminary results, where open circuit voltage (Voc), short circuit current density (Jsc), fill factor (FF) and power conversion efficiency (η) were 0.355 V, 1.72 mAcm-2, 0.295 and 0.18% respectively, indicate the coating polymer inhibits short circuit and (conjugated polymer)-grafted MWCNTs are promising materials for photovoltaic organic cells.


    奈米碳管係一種極具潛能的電子材料,其擁有非常優異的導電能力、極大的寬徑比以及與共軛高分子間所產生光誘發電子轉移現象。當將奈米碳管置入共軛高分子材料中,奈米碳管可以提供一個極長且不受阻礙的電子通道進行電子傳遞。在共軛高分子/奈米碳管此種複合材料中,共軛高分子經受光激發後,會產生激子,並於共軛高分子與奈米碳管的界面進行光誘發電子轉移,將激子分離成電子與電洞,其中,電子由奈米碳管傳遞,電洞由共軛高分子傳遞。此種機制可構成有機光伏元件,故奈米碳管應用於共軛高分子基材中,可以提供更多的激子產生體積以及更高的載子傳遞效率。為了研究在奈米尺度下,奈米碳管以及共軛高分子間的光電性質,我們利用表面接支方式合成一新型光電材料-MEH-PPV接枝多壁奈米碳管。經過照光後,MEH-PPV接枝多壁奈米碳管展現出光激發現象以及產生明顯的光電流。本研究中,利用一蕭基接面去解釋MEH-PPV的能間隙對效應、產生光電流的機制以及光誘發電子轉移之現象;MEH-PPV覆蓋厚度效應也同時被探討,其中,在本研究所觀察的範圍內,愈厚的MEH-PPV覆蓋層可以產生愈大的光電流並減少元件短路的發生。最後,將MEH-PPV接枝多壁奈米碳管做為主動層材料,製備一有機太陽能電池,並量測其效率,其量測結果: Voc 為0.355伏特,Jsc為1.72毫安培(每平方公分),fill factor為0.295,能量轉換效率為0.18%。此初步結果證實藉由表面接枝共軛高分子於多壁奈米碳管表面確實有助於抑制短路的發生,且此一接枝共軛高分子於碳管為一極具潛力的有機太陽能電池材料。

    Chapter 1 Introduction……………………………………………………………………………1 Chapter 2 Literature Review……………………………………………………………………...3 2.1 Structures of Carbon Nanotubes (CNTs)…………………………………………..3 2.2 Production of CNTs……………………………………………………………….6 2.2.1 Pyrolysis of Hydrocarbons in the Presence of Metal Catalysts…………….6 2.2.2 DC Arc Discharge of Graphite………………………………………………6 2.2.3 Laser Ablation……………………………………………………………….7 2.2.4 Electrolysis of Graphite in Molten Ionic Salts………………………………8 2.3 Chemical Functionalization of CNTs……………………………………………9 2.3.1 Oxidation of CNTs…………………………………………………………9 2.3.2 Surface Grafting Polymer Chains on CNTs………………………………10 2.4 The Role of CNTs in Electronic Materials……………………………………….11 2.4.1 Polymeric Light Emitting Devices…………………………………………12 2.4.2 Organic Thin-film Solar Cell………………………………………………13 2.4.1.1 Calculation of Fill Factor (FF) and Power Conversion Efficiency..14 2.5 MEH-PPV………………………………………………………………………..15 Chapter 3 Experimental Procedures……………………………………………………………..16 3.1 Materials………………………………………………………………………….16 3.2 Light-harvesting Polymers on Percolated CNTs…………………………………17 3.2.1 Acid Treatments of MWCNTs……………………………………………..18 3.2.2 Synthesis of MEH-PPV Monomers………………………………………..19 3.2.3 Synthesis of MEH-PPV Chains Grafted to MWCNTs……………………..21 3.2.4 Device Fabrication of the Organic Photovoltaic Cell……………………..23 3.2.5 Characterizations…………………………………………………………..25 3.3 Instruments……………………………………………………………………….26 3.3.1 Scanning Electron Microscopy (SEM)……………………………………..26 3.3.2 Transmission Electron Microscopy (TEM)………………………………..27 3.3.3 Thermogravitimetric Analysis (TGA)……………………………………..28 3.3.4 Fourier Transform Infrared Spectrum (FT-IR).............................................29 3.3.5 Ultraviolet (UV)-visible Spectrum................................................................29 3.3.6 Photo-luminescence (PL)…………………………………………………..30 3.3.7 Gel Permeation Chromatography (GPC)…………………………………..31 Chapter 4 Results and Discussions……………………………………………………………...33 4.1 Dispersion Observations……………………………………………………..33 4.1.1 Dispersion of acid-treated MWCNTs (MWCNT-COOH)……………33 4.1.2 Dispersion of (MEH-PPV monomer)-grafted MWCNTs and (MEH-PPV)-grafted MWCNTs……………………………………….34 4.2 FT-IR Spectra of (MEH-PPV)-grafted MWCNTs…………………………...36 4.3 TGA Analyses………………………………………………………………..38 4.4 Microstructure of (MEH-PPV)-grafted MWCNTs Based on TEM Observations……………………………………………………………….....40 4.5 Current-voltage (J-V) Characteristics………………………………………...45 4.6 Schottky Barrier Photodiode Model………………………………………….48 4.7 Coating Layer Thickness Effect……………………………………………...53 4.8 Power Conversion Efficiency of the Organic Photovoltaic Cell……….........56 Chapter 5 Conclusions…………………………………………………………………………..58 Chapter 6 Reference……………………………………………………………………………..59

    1. S. Iijima, Nature 1991, 354, 56-58.
    2. J. W. Mintmire, C. T. White, Carbon 1995, 33, 893-902.
    3. P. Poncharal, Z. L. Wang, D. Ugarte, W. A. de Heer, Science 1999, 283, 1513-1516.
    4. R. S. Ruoff, D. C. Lorents, Carbon 1995, 33, 925-930.
    5. M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Nature 1996, 381, 678-680.
    6. E. W. Wong, P. E. Sheehan, C. M. Lieber, Science 1997, 277, 1971-1975.
    7. L. Dai, Polym. Adv. Technol. 1999, 10, 357.
    8. B. I. Yakobson, C. J. Brabec, J. Bernholc, Phys Rev Lett 1996, 76, 2511-2514.
    9. K. M. Coakley, M. D. McGehee, Chem. Mater. 2004, 1623, 4533.
    10. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science 1992, 258, 1474.
    11. S. Morita, A. A. Zakhidov, K. Yoshimo, Solid State Commun. 1992, 82, 249
    12. S. A. Curran, P . M. Ajayan, W . J. Blau,D . L. Carroll, J. N. Coleman, A. B. Dalton, A. P. Davey,A. Drury, B. McCarthy, S. Maier,A. Strevens, Adv. Mater. 1998, 10, 1091.
    13. H. Ago, M. Shaffer, D. Ginger, A. Windle,R. H. Friend, Phys. Rev. B 2000, 61, 2286.
    14. P. J. F. Harris, ”Carbon nanotubes and related structures”, Cambridge.
    15. A. Hirsch, Angew. Chem. Int. Ed. 2002, 41, 1853-1859.
    16. N. Hamada, S. Sawada, A. Okuyama, Phys. Rev. Lett. 1992, 68, 1579.
    17. M. S. Dresselhaus, G. Dresselhaus, P. Eklund, R. Saito, Phys. World 1998, January, 33.
    18. P. M. Ajayan, T. W. Ebbesen, Rep. Prog. Phys. 1997, 60, 1025.
    19. M. J. Yacamàn, M.M. Yoshida, L. Rendon, J.G. Santiesteban, Appl. Phys. Lett. 1993, 62, 202.
    20. C. Journet, P. Bernier, Appl. Phys. A 1998, 67, 1-9.
    21. T. W. Ebbesen, P.M. Ajayan, Nature 1992, 358, 220
    22. Y. Saito, Y. Tani, A. Kasuya, J. Phys. Chem. B. 2000, 104(11), 2495.
    23. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, Nature 1985, 318, 162.
    24. T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert, R. E. Smalley, J. Phys. Chem. 1995, 99, 10694.
    25. W. K. Hsu, J. P. Hare, M. Terrones, H. W. Kroto, D. R. M. Walton, P. J. F. Harris, Nature 1995, 377, 687.
    26. W. K. Hsu, M. Terrones, J. P. Hare, H. Terrones, H. W. Kroto, D. R. M. Walton, Chem. Phys. Lett. 1996, 262, 161.
    27. E. Bekyarova, M. E. Itkis, N. Cabrera, B. Zhao, A. P. Yu, J. B. Gao, R. C. Haddon, J Am Chem Soc 2005, 127, 5990.
    28. Z. M. Dang, C. W. Nan, D. Xie, Y. H. Zhang, S. C. Tjong, Appl Phys Lett 2004, 85, 97.
    29. N. Grossiord, J. Loos, O. Regev, C. E. Koning, Chem Mater 2006, 18, 1089.
    30. Y. J. Kim, T. S. Shin, H. D. Choi, J. H. Kwon, Y. C. Chung, H. G. Yoon, Carbon 2005, 43, 23.
    31. S. P. Li, Y. J. Qin, J. H. Shi, Z. X. Guo, L. Yongfang, D. B. Zhu, Chem Mater 2005, 17, 130.
    32. X. F. Lu, J. N. Zheng, D. M. Chao, J. Y. Chen, W. J. Zhang, Y. Wei, J Appl Polym Sci 2006, 100, 2356.
    33. T. McNally, P. Potschke, P. Halley, M. Murphy, D. Martin, S. E. J. Bell, G. P. Brennan, D. Bein, P. Lemoine, J. P. Quinn, Polymer 2005, 46, 8222.
    34. T. Ogasawara, Y. Ishida, T. Ishikawa, R. Yokota, Compos Part a-Appl S 2004, 35, 67.
    35. J. Sandler, M. S. P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, A. H. Windle, Polymer 1999, 40, 5967.
    36. Y. L. Yang, M. C. Gupta, K. L. Dudley, R. W. Lawrence, Nanotechnology 2004, 15, 1545.
    37. B. K. Zhu, S. H. Xie, Z. K. Xu, Y. Y. Xu, Compos Sci Technol 2006, 66, 548.
    38. J. P. Salvetat, G. A. D. Briggs, J. M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stockli, N. A. Burnham, L. Forro, Phys Rev Lett 1999, 82, 944.
    39. D. Qian, E. C. Dickey, R. Andrews, T. Rantell, Appl. Phys. Lett. 2000, 76, 2868.
    40. Z. Jin, K. P. Pramoda, G. Xu, S. H. Goh, Chem Phys Lett 2001, 337, 43.
    41. Z. X. Jin, K. P. Pramoda, S. H. Goh, G. Q. Xu, Mater Res Bull 2002, 37, 271.
    42. T. Kyotani, S. Nakazaki, W. H. Xu, A. Tomita, Carbon 2001, 39, 782.
    43. D. B. Mawhinney, V. Naumenko, A. Kuznetsova, Chem. Phys. Lett. 2000, 324, 213.
    44. D. B. Mawhinney, V. Naumenko, A. Kuznetsova, J. T. Yates Jr, J. Liu, R. E. Smalley, J. Am. Chem. Soc. 2000, 122, 2383.
    45. K. Hernadi, A. Siska, L. Thien-Nga, Solid State Ionics 2001, 141, 203.
    46. K. C. Hwang, J Chem. Soc. Chem. Comm. 1995, 2, 173.
    47. J. Liu, A. G. Rinzler, H. J. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Lverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y. S. Shon, T. R. Lee, D. T. Colbert, R. E. Smalley, Science 1998, 280, 1253.
    48. J. Zhang, H. Zou, Q. Qing, Y. Yang, Q. Li, Z. Liu, X. Guo, Z. Du, J. Phys. Chem. B 2003, 107, 3712-3718.
    49. M. Holzinger, J. Steinmetz, D. Samaille, M. Glerup, M. Paillet, P. Bernier, Carbon 2004, 42, 941-947.
    50. T. S. Lin, L. Y. Cheng, C. C. Hsiao, A. C-M. Yang, Mater. Chem. Phys. 2005, 94, 438-443.
    51. C. C. Hsiao, T. S. Lin, L. Y. Cheng, C-C. M. Mar, A. C-M. Yang, Macromolecules
    2005, 38, 4811-4818.
    52. J. Y. Lin, L. C. Huang, C. W. Lin, A. C.-M. Yang, submitted for publication.
    53. S. Reich, C. Thomsen, J. Robertson, Phys. Rev. Lett. 2005, 308, 838.
    54. S. J. Tans, A. R. M. Verschueren, C. Dekker, Nature 1998, 393, 49.
    55. S. P. Somani, P. R. Somani, E. Flahaut, and M. Umeno, Appl. Phys. Lett. 2006, 89, 223505.
    56. P. R. Somani, S. P. Somani, E. Flahaut, and M. Umeno, Nanotechnology 2007, 18, 185708.
    57. A. J. Miller, R. A. Hatton, S. R. P. Silva, Appl. Phys. Lett. 2006, 89, 133117.
    58. S. Berson, R. de Bettignies, S. Bailly, S. Guillerez, B. Jousselme, Adv. Funct. Mater. 2007, 17, 3363-3370.
    59. E. Kymakis, G. A. J. Amaratunga, Rev. Adv. Mater. Sci. 2005, 10, 300.
    60. P. Fournet, J. N. Coleman, B. Lahr, A. Drury, W. J. Blau, J. Appl. Phys. 2001, 90, 969-975.
    61. Y. G. Ha, E. A. You, B. J. Kim, J. H. Choi, Synthetic Metal 2005, 153, 205-208.
    62. G. Yu, J. Gao, J. Hummelen, F. Wudl, A. J. Heeger, Science 1995, 270, 1789.
    63. M. Granstrom, K. Petrisch, A. C. Arias, A. Lux, M. R. Andersson, R. H. Friend, Nature (London) 1998, 395, 257.
    64. D. M. Guldi, G. M. A. Rahman, F. Zerbetto, M. Prato, Acc. Chem. Res. 2005, 38, 871.
    65. B. J. Landi, R. P. Raffaelle, S. L. Castro, S. G. Bailey, Prog. Photovolt. 2005, 13, 165.
    66. J. A. Rudl, L. S. Lovell, J. W. Senn, Q. Qiaoand, J. T. Mcleskey, J. Mater. Sci. 2005, 40, 1455.
    67. B. Pradhan, S. K. Batabyal, A. J. Pal, Appl. Phys. Lett. 2006, 88, 093106.
    68. L. M. Rodr´ıguez, F. Ruz, P. de la Cruz, J. L. Delgado, F. Langa, A. Urbina, Proc. 20th Phot. Solar Energy Conf. 2005, 338.
    69. T. L. Benanti, D. Venkataraman, Photosynthesis Research 2006, 87, 73–81.
    70. C. Li, Y. Chen,Y. Wang, Z. Iqbal, M. Chhowalla, S. Mitra, J. Mater. Chem. 2007, 17, 2406–2411.
    71. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D A. Dos Santos, J. L. Bre´das, M. Lo¨gdlund, W. R. Salaneck, Nature 1999, 397, 121.
    72. Malcolm P. Stevens, Polymer Chemistry, 3rd Ed., Oxford, 1999.
    73. http://acept.asu.edu/PiN/rdg/elmicr/elmicr.shtml
    74. 陳力俊,”材料電子顯微鏡學”,國科會精儀中心
    75. http://universe-review.ca/R11-13-microscopes.htm
    76. G. Lombardl, For Better Thermal Analysis, 2nd Ed., ICTA, 1980.
    77. http://radchem.nevada.edu/chem455/lecture_22__thermal_methods.htm
    78. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, John Wiley, New York, 1986.
    79. http://en.wikipedia.org/wiki/Scanning_Electron_Microscope
    80. http://teaching.shu.ac.uk/hwb/chemistry/tutorials/molspec/uvvisab1.htm
    81. International Union of Pure and Applied Chemistry. "photochemistry".
    Compendium of Chemical Terminology Internet edition.
    82. http://www.answers.com/topic/gel-permeation-chromatography?cat=technology
    83. A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications. New York: John Wiley & Sons, 2nd Edition, 2000.
    84. D. M. Johansson, G. Srdanov, G. Yu, M. Theander, O. Inganas, M. R. Andersson,
    Macromolecules 2000, 33, 2525.
    85. D. L. Pavia, G. M. Lampman, G. S. Kriz, Introduction to Spectroscopy. 3rd ed. USA: Brooks/Cole. 2001.
    86. M. Fox, Optical Properties of Solids, Oxford, 2001, 173-176.
    87. J. Kido, H. Shionoya, K. Nagai, Appl. Phys. Lett. 1995, 67, 2281.
    88. S. M. Sze, Semiconductor Devices, John Wiley & Sons, Inc. 2002, 224-252.
    89. B.L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Application, Plenum, New York, 1984.
    90. Kwok K. Ng, Complete Guide to Semiconductor Devices, IEEE press, Wiley-interscience, 2002.
    91. http://lain.atm.ncu.edu.tw/lain_1/POGA/12.GIF

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE