簡易檢索 / 詳目顯示

研究生: 郭峰俊
論文名稱: 利用晶格波爾茲曼方法模擬微結構表面對液滴的影響
Simulation of Structure Effects on Droplet Using Lattice Boltzmann Method
指導教授: 林昭安
口試委員: 吳宗信
陳慶耀
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 60
中文關鍵詞: 晶格波茲曼
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此論文中,我們利用三維的晶格波茲曼兩相流模型來模擬並探討高密度比的液滴在微結構表面上的潤濕性。此模型是根據Briant et al.[12]之部分潤濕性邊界法並結合Zheng et al[26]之高密度比兩相流模型衍生而成。此論文提供了一個從平板到微結構上執行部分性潤濕邊界法的途徑。


    In the thesis, simulation of droplet state on micro-structured partial wetting
    surfaces is investigated by using a three-dimensional lattice Boltzmann two-phase
    model with large liquid-gas density ratio. This is based on the partial wetting
    boundary method of Briant et al. [12] integrating into the large density ratio model
    of Zheng et al. [26] This paper reports a way of implementing the partial wetting
    boundary condition from flat surface to microstructure through different treatments
    to the the gradient and Laplacien of the order parameter by Ju [55]. We apply
    this method to deal with the high density ratio two phase flow problems such as
    the behaviors of the droplet on the microstructure and improve the symmetry of
    the structure. In addition, we simulate the state of the droplet on micro-structure
    according to the conditions of experiment, and then we define a dimensionless
    factor D to connect the size of the droplet and structure. Also, in the present
    parallel implementation, the single program multiple data (SPMD) environment is
    employed. Message-Passing-Interface (MPI) is adopted for communication between
    the processors.

    Contents 1 Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Lattice Boltzmann method . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Multiphase and multicomponent fluid systems . . . . . . . . . 2 1.1.3 Partial wetting boundary . . . . . . . . . . . . . . . . . . . . . 3 1.2 Literature survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Lattice Boltzmann multiphase model . . . . . . . . . . . . . . 4 1.2.2 Wettability control on the solid surface . . . . . . . . . . . . . 6 1.2.3 Wetting behaviors on micro-structured surfaces . . . . . . . . 7 1.3 Motivation and objective . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Theory and governing equations 10 2.1 The Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 BGK and the low-Mach-number approximation . . . . . . . . . . . . 11 2.2.1 BGK approximation . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 The low-Mach-number approximation . . . . . . . . . . . . . . 13 2.3 Discretization of the Boltzmann equation . . . . . . . . . . . . . . . . 14 2.3.1 Discretization of phase space . . . . . . . . . . . . . . . . . . . 14 2.3.2 Dicretization of time . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 The free-energy model . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.1 The free-energy function . . . . . . . . . . . . . . . . . . . . . 17 2.4.2 Analytical solution of interface profile . . . . . . . . . . . . . . 17 2.5 A Lattice Boltzmann model for multiphase flows with large density ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5.1 The governing equation . . . . . . . . . . . . . . . . . . . . . . 18 2.5.2 Lattice Boltzmann equation . . . . . . . . . . . . . . . . . . . 19 2.5.3 Interface capturing equation . . . . . . . . . . . . . . . . . . . 20 2.6 Wetting theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 Numerical algorithm 22 3.1 Simulation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 Boundary conditions for the computational domain . . . . . . . . . . 23 3.2.1 Velocity boundary conditions for solving fluid flow . . . . . . . 23 3.2.2 Bounce back boundary condition for solving interface capture equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.3 Wetting boundary condition . . . . . . . . . . . . . . . . . . . 24 3.3 Wetting boundary implementations on the gradient of order parameter 25 3.3.1 Inner grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3.2 Wall grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.3 Edge grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.4 Corner grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4 Wetting boundary implementations on the Laplacian of order parameter 30 3.4.1 Inner grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4.2 Wall grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4.3 Edge grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4.4 Corner grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.5 Similarities between experiment & simulation . . . . . . . . . . . . . 33 3.6 Periodic boundary condition . . . . . . . . . . . . . . . . . . . . . . . 34 3.7 Parallel algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4 Numerical results 36 4.1 Grid dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 Influence of partial wetting boundary treatment . . . . . . . . . . . . 38 4.3 Comparison of the results . . . . . . . . . . . . . . . . . . . . . . . . 40 5 Conclusion 52

    Bibliography
    [1] U. Frisch, B. Hasslacher, and Y. Pomeau, “Lattice-gas automata for the Navier-
    Stokes equation,” Phys. Rev. Lett. 56, 1505, (1986).
    [2] S. Wolfram, “Cellular automaton fluids 1: Basic theory,” J. Stat. Phys. 45,
    471, (1986).
    [3] F. J. Higuera, S. Sussi, and R. Benzi, “3-dimensional flows in complex
    geometries with the lattice Boltzmann method,” Europhys. Lett. 9, 345, (1989).
    [4] F. J. Higuera, and J. Jem´enez, “Boltzmann approach to lattice gas
    simulations,” Europhys. Lett. 9, 663, (1989).
    [5] P. L. Bhatnagar, E. P. Gross, and M. Grook, “A model for collision processes
    in gases. I. small amplitude processes in charged and neutral one-component
    systems,” Phys. Rev. E 94, 511, (1954).
    [6] S. Harris, “An introduction to the throry of the Boltzmann equation,” Holt,
    Rinehart and Winston, New York, (1971).
    [7] U. Frisch, D. d’Humi`eres, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.
    P. Rivet, “Lattice gas hydrodynamics in two and three dimensions,” Complex
    Syst. 1, 649, (1987).
    [8] D. O. Martinez, W. H. Matthaeus, S. Chen, and D. C. Montgomery,
    “Comparison of spectral method and lattice Boltzmann simulations of twodimensional
    hydrodynamics,” Phys. Fluids. 6, 1285, (1994).
    [9] R. Scardovelli and S. Zaleski, “Direct numerical simulation of free-surface and
    interfical flow,” Annu.Rev.Fluid Mech. 31, 567, (1999).
    [10] S. Osher and R. P. Fedkiw, “Level set method: An overview and some recent
    results,” J. Comput. Phys. 169, 463, (2001).
    [11] T. Y. Hou, J. S. Lowengrub, M. J. Shelley, “Boundary integral methods for
    multicomponent fluids and multiphase materials,” J. Comput.Phys. 169, 302,
    (2001).
    [12] A. J. Briant, P. Papatzacos, J. M. Yeomans, “Lattice Boltzmann simulations
    of contact line motion in a liquid-gas system, ” Phil. Trans. Roy. Soc. A. 360,
    485, (2002).
    [13] A. J. Briant, Wagner, A. J. Wagner, J. M. Yeomans, “Lattice Boltzmann
    simulations of contact line motion: I. Liquid-gas systems, ” Phys. Rev. E 69,
    031602, (2004).
    [14] A. J. Briant and J. M. Yeomans, “Lattice Boltzmann simulations of contact
    line motion: II. Binary fluids,” Phys. Rev. E 69, 031603, (2004).
    [15] M. R. Swift, W. R. Osborn, J. M. Yeomans “Lattice Boltzmann simulation of
    nonideal fluids,” Phys. Rev. Lett. 75(5), 830-833, (1995).
    [16] M. R. Swift, W. R. Osborn, J. M. Yeomans “Lattice Boltzmann simulations of
    liquid-gas and bunary-fluid systems,” Phys. Rev. E,54, 5041-5052, (1996).
    [17] A. Dupuis and J. M. Yeomans, “Lattice Boltzmann modelling of droplets on
    chemically heterogeneous surfaces,” Future Gener. Comput. Syst. 20, 993-1001,
    (2004).
    [18] T. Inamuro, T. Ogata, S. Tajima, N. Konishi, “A lattice Boltzmann method
    for incompressible two-phase flows with large density differences,” J. Comput.
    Phys. 198, 628, (2004).
    [19] X. Shan and H. Chen, “Lattice Boltzmann model for simulating flows with
    multiple phases and components,” Phys. Rev. E. 47, 1815-1819, (1993).
    [20] X. Shan and H. Chen, “Simulation of Nonideal Gases and Liquid-GasPhase
    Transitions by the Lattice Boltzmann Equation,” Phys. Rev. E. 49, 2941-2948,
    (1994).
    [21] X. Shan, and G. D. Doolen, “Multicomponent Lattice-Boltzmann Model With
    Interparticle Interaction,” J. Stat. Phys. 81, 379-393, (1995).
    [22] J. W. Cahn and J. E. Hilliard, “Free energy of a nonuniform system.-Interfacial
    energy,” J. Chem. Phys. 28(2), (1958).
    [23] T. Lee and C. L. Lin, “A stable discretization of the lattice Boltzmann equation
    for simulation of incompressible two-phase flows at high density ratio,” J.
    Comput. Phys. 206, 16-47, (2005).
    [24] X. He, S. Chen, R. Zhang, “A lattice Boltzmann scheme for incompressible
    multiphase flow and its application in simulation of Rayleigh-Taylor
    instability,” J. Comput. Phys. 152(2), 642-663, (1999).
    [25] D. Jamet, O. Lebaigue, N. Coutris, J. M. Delhaye, “The second gradient
    method for the direct numerical simulation of liquid-vapor flows with phase
    change,” J. Comput. Phys. 169, 624-651, (2001).
    [26] H. W. Zheng, C. Shu, Y. T. Chew, “A lattice Boltzmann model for multiphase
    flows with large density ratio,” JCP, Phys. 218, 353-371, (2006).
    [27] J. J. Huang, C. Shu, Y. T. Chew, H. W. Zheng, “Numerical study of 2d
    multiphase flows over grooved surface by lattice Boltzmann method,” Int. J.
    Mod. Phys C. 18(4), 492-500, (2007).
    [28] Y. Y. Yan and Y. Q. Zu, “lattice Boltzmann method for incompressible twophase
    flows on partial wetting surface with large density ratio,” J. Comput.
    Phys., 227, 763-775, (2007).
    [29] R. N. Wenzel, “Surface roughness and contact angle,” J. Phys. Collid Chem.
    53, 1466, (1949).
    [30] A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday
    Soc. 40, 546, (1944).
    [31] C. H. Choi, C. J. Kim, “Large slip of aqueous liquid flow over a nanoengineered
    superhydrophobic surface,” Phys. Rev. Lett. 96, 066001, (2006).
    [32] C. M. Cheng and C. H. Liu, “An electrolysis-bubble- actuated micropump
    based on the roughness gradient design of hydrophobic surface,” J.
    Microelectromech. Syst. 16, 1095-1105, (2007).
    [33] M. Y. Lin, C. S. Yu, Y. C. Hu, S. C. Cheng, H. T. Hu, “Droplet-based
    microtexture biochip system for triglycerides and methanol measurement,”
    27th Annual International Conference of the Engineering in Medicine and
    Biology Society, 2005. IEEE-EMBS 2005. 530-533, (2005).
    [34] A. Dupuis and J. M. Yeomens, “Modeling droplets on superhydrophobic
    surfaces: equilibrium states and transitions,” Langmuir. 21, 2624-2629, (2005).
    [35] N. Moradi, F. Varnik, I. Steinbach, “Roughness-gradient-induced spontaneous
    motion of droplets on hydrophobic surfaces: A lattice Boltzmann study,”
    Europhysics Letters. 89, 26006, (2010).
    [36] J. J. Huang, C. Shu, Y. T. Chew, “Lattice Boltzmann study of droplet motion
    inside a grooved channel,” Phys. Fluids. 21, 022103, (2009).
    [37] Y. Q. Zu and Y. Y. Yan, “Lattice Boltzmann method for modelling droplets
    on chemically heterogeneous and microstructured surfaces with large liquid-gas
    density ratio,” Journal of Applied Mathematics. 76, 743-760, (2011).
    [38] D. ¨ Oner and T. J. McCarthy, “Ultrahydrophobic surfaces. Effects of
    topography length scales on wettability,” Langmuir. 16, 7777-7782, (2000).
    [39] C. Sun, X. W. Zhao, Y. H. Han, Z. Z. Gu, “Control of water droplet motion by
    alteration of roughness gradient on silicon wafer by laser surface treatment,”
    Thin Solid Films. 516, 4059V4063, (2008).
    [40] Tamas I. Gombosi, “Gas kinetic theorym,” Cambridge University Press,
    (1994).
    [41] X. He, and L. S. Luo, “Theory of the lattice Boltzmann method: From the
    Boltzmann equation to the lattice Boltzmann equation,” Phys. Rev. E 56,
    6811-6817, (1997).
    [42] D. A. Wolf-Gladrow, “Lattice-gas cellular automata and lattice Boltzmann
    models - an introduction,” Springer, Lecture Notes in Mathematics, p.159,
    (2000).
    [43] J. S. Rowlinson and B. Widom, “Molecular Theory of Capillarity, Clarendon,”
    Oxford, (1989).
    [44] V. M. Kendon, M. E. Cates, I. Pagonabarraga, J.C. Desplat, P. Bladon,
    “Inertial effects in three-dimensional spinodal decomposition of a symmetric
    binary fluid mixture: a lattice Boltzmann study,” J. Fluid Mech. 440, 147-
    203, (2001).
    [45] V. M. Kendon, M. E. Cates, I. Pagonabarraga, J. C. Desplat, P. Bladon,
    “Inertial effects in three-dimensional spinodal decomposition of a symmetric
    binary fluid mixture: a lattice Boltzmann study,” J. Fluid Mech. 440, (2001).
    [46] H. W. Zheng, C. Shu, Y. T. Chew, “Lattice Boltzmann interface capturing
    method for imcompressible,” Phys, Rev, E72, 056705, (2005).
    [47] D. Jacqmin, “Calculation of two-phase Navier-Stokes flows using phase-field
    modeling,” J. Comput. Phys. 155, 96-127, (1999).
    [48] N. Takada, M. Misawa, A. Tomiyama, S. Hosokawa, ”Simulation of bubble
    motion under gravity by lattice Boltzmann method,” J. Nucl. Sci. Technol.
    38(5), 330, (2001).
    [49] Z. Guo, C. Zhen, B. Shi, “Discrete lattice effects on the forcing term in the
    lattice Boltzmann method,” Phys. Rev. E 65(4), 046308, (2002).
    [50] J. W. Cahn, “Critical point wetting,” J. Chem. Phys. 66, 3667-3672, (1977).
    [51] C. F. Ho, C. Chang, K. H. Lin, C. A. Lin, “Consistent Boundary Conditions
    for 2D and 3D Lattice Boltzmann Simulations,” CMES-Comp. Model Eng. 44,
    137-155, (2009).
    [52] M. Cheng, J. S. Hua, J. Lou, “Simulation of bubble-bubble interaction using
    a lattice Boltzmann method,” Comput. Fluids 39, 260-270, (2010).
    [53] J. Zhang, “Lattice Boltzmann method for microfluidics: models and
    applications,” Microfluid. Nanofluid. 10, 1-28,(2011).
    [54] C. H. Shih, C. L. Wu, L. C. Chang, C. A. Lin, “Lattice Boltzmann simulations
    of incompressible liquid-gas system on partial wetting surface,” Phil. Trans. R.
    Soc. A. 369, 2510-2518, (2011).
    [55] Y. T. Ju, C. A. Lin,“Simulation of droplet on micro-structured surface by
    lattice Boltzmann method.”
    [56] Z. Yoshimitsu, A. Nakajima, T. Watanabe, K. Hashimoto, “Effects of surface
    structure on the hydrophobicity and sliding behavior of water droplets,”
    Langmuir 18, 5818V5822, (2002).
    [57] Bo He, Neelesh A. Patankar, and Junghoon Lee, “Multiple Equilibrium Droplet
    Shapes and Design Criterion for Rough Hydrophobic Surfaces,” Langmuir 19,
    4999 (2003).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE