簡易檢索 / 詳目顯示

研究生: 徐可芳
Hsu, Ke-Fang
論文名稱: Polarization Dependence X-ray Absorption Spectroscopy and Resonant Inelastic X-ray Scattering Studies at Co K-edge in Single Crystal Bi2Sr2CoO6+δ Compounds
Bi2Sr2CoO6+δ單晶之鈷K吸收邊線偏振X光吸收光譜與共振非彈性X光散射光譜研究
指導教授: 崔古鼎
Tsuei, Ku-Ding
口試委員: 黃迪靖
周方正
學位類別: 碩士
Master
系所名稱: 理學院 - 先進光源科技學位學程
Degree Program of Science and Technology of Synchrotron Light Source
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 96
中文關鍵詞: 線偏振X光吸收光譜共振非彈性X光散射光譜
外文關鍵詞: polarization dependent X-ray absorption, resonant inelastic X-ray scattering, Bi2Sr2CoO6+δ, CoO6 octahedron, dipole transition, quadrupole transition, local distortion, charge transfer
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 層狀鈷氧化物Bi2Sr2CoO6+δ引起科學家廣泛興趣的主因是由於它的結構與Bi2Sr2CuO6+δ相似。不同含氧量的Bi2Sr2CoO6+δ展現出令人驚奇的電子與磁的特性。在本論文中,我們以在鈷K吸收邊緣不同偏極方向之X光吸收光譜與共振非彈性X光散射光譜等技術來探討Bi2Sr2CoO6+δ單晶中鈷氧鍵結能態、電子軌域分布情形以及費米能階附近的電荷躍遷行為。從X光吸收光譜研究中顯示,由於Bi2Sr2CoO6+δ晶體內CoO6所形成的八面體具有很強的形變使其破壞了晶格結構D4h的對稱性,此八面體的形變造成了鈷原子本身4p軌域的混成或是4p軌域與3d軌域的混成。我們推測造成此高度軌域混成之原因可能是來自於氧原子的參雜,當氧含量δ越大CoO6所形成的八面體形變量就越大,實驗結果證實δ > 0.25的形變量比δ ~ 0.25大。從共振非彈性X光散射光譜可以發現,樣品Tpaek ~ 280 K在2.8電子伏特, 4.6電子伏特, 7.0電子伏特等三處具有能量損失的激發態,類似的情形也發生在樣品Tpaek ~ 150 K上, 能量損失激發態出現在3.0電子伏特, 4.6電子伏特及7.7電子伏特處。這些能量損失激發態的位置可以對應到鈷原子3d軌域以及氧原子2p軌域間的電荷躍遷機制。其中我們可以清楚的辨認出4.5電子伏特的能量損失激發態出現在吸收光譜中鈷原子的電荷躍遷1s→4px’, 4py’伴隨著氧之共價電子轉移至鈷上O 2p→Co 3dx’2- y’2的過程。


    Layered cobalt oxide Bi2Sr2CoO6+δ have attracted much interest because it is isostructural to the high-Tc superconductor Bi2Sr2CuO6+δ. Furthermore, Bi2Sr2CoO6+δ exhibit a series of surprising electronic and magnetic properties with various oxygen contents. We have carried out polarization dependent X-ray absorption (XAS) and resonant inelastic X-ray scattering (RIXS) measurements to study the orbital symmetry and the energies of ligand to metal charge transfer excitations. The XAS measurement reveals that because the centrosymmetry is broken from D4h symmetry due to strong local distortion, there exists a large mixing among 4p states or hybridization between 4p and 3d states. This distortion of CoO6 octahedron with δ > 0.25 is more severe than δ ~ 0.25 due to extra oxygen insertion
    In the RIXS measurement, spectra of the Tpeak~280 K sample exhibit three clear inelastic features around 2.8 eV, 4.6 eV and 7.0 eV. Similarly in the Tpeak~150 K sample three peaks appear around 3.0 eV, 4.6 eV and 7.7 eV. The lack of dispersion suggests the highly localized characteristics of these excitations. These features may be referred to charge transfer mechanism from a 2p electron of O to a 3d hole of Co in the CoO2 plane. Particularly the energy loss feature at 4.5 eV can be clearly identified as a charge transfer excitation because it resonates at the absorption transition of 1s→4px’, 4py’ with ligand to metal charge transfer (LMCT) from O 2p→Co 3dx’2- y’2.

    Chapter 1 Introduction 1 Chapter 2 Backgrounds 3 2.1 Sample Information 3 2.1.1 Sample Introduction 3 2.1.2 Sample Preparation 3 2.1.3 Sample Physical Properties 5 2.1.3.1 Mott-Hubbard Insulator and Charge Transfer Insulator 11 2.1.3.2 Crystal Field Theory and Jahn-Teller Distortion 14 2.2 Beamline Setup 18 Chapter 3 X-ray Absorption Spectroscopy 21 3.1 Introduction 21 3.2 Dipole and Quadrupole Transition 23 3.3 Experiment Setup and Result 25 3.3.1 Pre-Edge Part 32 3.3.2 Edge Part 39 Chapter 4 Resonant Inelastic X-ray Scattering 55 4.1 Introduction 55 4.2 Principle and Theory 57 4.2.1 Principle 57 4.2.2 Theory 59 4.2.3 RIXS Spectrometer Setup 64 4.3 Incident Photon Energy Dependence 68 4.4 Momentum Transfer Dependence 73 4.5 Discussion 80 4.5.1 Co Kβ2,5 and Kβ” Fluorescence of Bi2Sr2CoO6+δ 80 4.5.2 Energy Loss Feature 83 Chapter 5 Conclusions 92 Chapter 6 Reference 94

    1. C. Michel, M. Hervieu, M. M. Borel, A. Grandin, F. Deslandes, J. Provost and B. Raveau, Z. Phys. B68, 421 (1987).
    2. J. Akimitsu, A. Yamazaki, H. Sawa and H. Fujiki, Jpn. J. Appl. Phys. 26, L2080 (1987).
    3. H. Meada, Y. Tanaka, M. Fukutomi and T. Asano: Jpn. J. Appl. Phys. 27, L209 (1988).
    4. E. Takayama-Muromachi, Y. Uchida, Y. Matsui, M. Onoda and K. Kato, Jpn. J. Appl. Phys. 27, L556 (1988).
    5. J. M. Tarascon, P. F. Miceli, P. Barboux, D. M. Hwang, G. W. Hull, M. Giroud, L. H. Greene, Yvon LePage, W. R. McKinnon, E. Tselepis, G. Pleizier, M. Eibschutz, D. A. Neumann, and J. J. Rhyne, Phys. Rev. B. 39, 11587 (1989).
    6. J. M. Tarascon, Y. le Page, W. R. Mckinnon, E. Tselepis, P. Barboux, B. G. Bagley, and R. Ramesh, Materials Research Society Symposia Proceedings. 156, 317 (1989).
    7. J. B. Shi, J. C. Ho, T. J. Lee, B. S. Chiou, H. C. Ku, Physica C. 205, 129 (1993).
    8. H. Greene, Yvon LePage, W. R. McKinnon, E. Tselepis, G. Pleizier, M. Eibschutz, D. A. Neumann, and J. J. Rhyne, Phys. Rev. B. 39, 11587 (1989).
    9. G. Burns, G. V. Chandrashekhar, F. H. Dacol, M. W. Shafer, and P. Strobel, Solid State Commun. 67, 603 (1988).
    10. K. J. Thomas, Y. S. Lee, F. C. Chou, B. Khaykovich, P. A. Lee, M. A. Kastner, R. J. Cava, and J. W. Lynn, Phys. Rev. B. 66, 054115 (2002).
    11. H. C. Hsu, ‘Crystal Growth and Physical Property Studies of Low Dimensional Transition Metal Oxide Materials Bi2Sr2CoO6+δ and LiCu2O2.’, Ph.D. thesis, National Taiwan Normal University, June (2010).
    12. A. Moreo, S. Yunoki, and E. Dagotto, Science 283, 2034 (1999), and references therein.
    13. G. Chern, L. R. Song, J. B. Shi, Physica C. 253, 97 (1995).
    14. Kazimierz Conder, Solid State Chemistry Group Laboratory for Developments and Methods and Laboratory for Neutron Scattering Paul Scherrer Institute & ETH Zürich ‘Crystal growth of oxides by Traveling Solvent Floating Zone technique’
    15. Mott N. F., Proc. Phys. Soc. A. 62, 416 (1949).
    16. Mott N. F., Can. J. Phys. 34, 1356 (1956).
    17. Mott N. F., Metal-Insulator Transitions (London: Taylor and Francis1974).
    18. Anderson P.W., Phys. Rev. 115. (1959).
    19. Hubbard J. Proc Roy Soc (London), 1964, A281: 401.
    20. J. Zaanen, G. A. Sawatzky and J. W. Allen, Phys. Rev. Lett. 55, 418 (1985).
    21. A. Fujimori, Department of physics, University of Tokyo, Bunkyo, Tokyo 113, Japan.
    22. Andrea Damascelli, Zahid Hussain, Zhi-Xun Shen, Rev. of Modern Phys. 75, 473 (2003).
    23. Inorganic chemistry: Principle of structure and reactivity, James E. Huheey, Ellen A. Keiter, Richard L. Keiter, 2007.
    24. J. H. Van Vleck, J. Chem. Phys. 3, 803-806, 807-813 (1935).
    25. C. J. Ballhausen, J. Chem. Dduc. 56, 194-197, 215-218, 357-361 (1979).
    26. 吳文斌、黃迪靖, ”物理雙月刊(廿六卷二期)”, p401, 中華民國2004年4月
    27. Y. Q. Cai, C. C. Chen, P. Chow, K. L. Tsang, C. T. Chen, and C. C. Kao, SRRC Activity Report 2011/2002. 83, (2002).
    28. C. H. Chen, B. J. Hwang, J. M. Chen, H. S. Sheu, J. Power Source. 174, 938 (2007).
    29. J. -P. Rueff and A. Shukla, Rev. Mod. Phys. 82, 847 (2010).
    30. Min Gyu Kim and Chul Hyun Yo, J. Phys. Chem. B. 103, 6457 (1999).
    31. Won-Sub Yoon and Kwang-Bum Kim, Min-Gyu Kim, Min-Kyu Lee, Hyun-Joon Shin, Jay-Min Lee, and Jae-Sung Lee, Chul-Hyun Yo, J. Phys. Chem. B. 106, 9252 (2002).
    32. Frank de Groot, György Vank´o, Pieter Glatzel, J. Phys. Condens. 21, 104207 (2009).
    33. György Vankó; Frank M. F. de Groot, aeXiv: 0802.2744v1 (2008).
    34. M. C. Martins Alves, J. P. Dode let, D. Guay, M. Ladouceur, G. Tourillon, J. Phys. Chem. 96, 10898 (1992).
    35. Janine C. Swarbrick, Tsu-Chien Weng, Karina Schulte, Andrei N. Khlobystov, Pieter Glatzel, Phys. Chem. Chem. Phys. 12, 9693 (2010).
    36. T. C. Kaspar, T. Droubay, S. M. Heald, P. Nachimuthu, C. M. Wang, V. Shutthanandan, C. A. Johnson, D. R. Gamelin, S. A. Chambers, New Journal of Physics. 10, 055010 (2008).
    37. Hyun Chul Choi, Sang Yun Lee, Seung Bin Kim, Min Gyu Kim, Min Kyu Lee, Hyun Joon Shin, and Jae Sung Lee, J. Phys. Chem. B. 106, 9252 (2002).
    38. Y. W. Tsai, B. J. Hwang, G. Ceder, H. S. Sheu, D. G. Liu, and J. F. Lee ,Chem. Mater. 17, 3191 (2005).
    39. C. C. Kao, W. A. L. Caliebe, J. B. Hastingts, and J. M. Gillet, Phys. Rev. B. 54, 16361 (1996).
    40. U. Bergmann, C. R. Horne, T. J. Collins, J. M. Workman, and S. P. Cramer, Chem. Phys. Lett. 302, 119 (1999).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE