簡易檢索 / 詳目顯示

研究生: 楊子頤
Yang, Tzu-Yi
論文名稱: 以配置多組氣體感測器之輪型機器人系統為基礎之氣體源追蹤演算法
Odor Source Tracking Algorithm Based on Mobile Robot System with Multiple Gas Sensors
指導教授: 鄭桂忠
Tang, Kea-Tiong
口試委員: 楊谷洋
Young, Ku-Young
陳新
Chen, Hsin
劉奕汶
Liu, Yi-Wen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 71
中文關鍵詞: 輪型機器人氣體追蹤演算法
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的日新月異,人們將許多的工作交給了機器人,於是配置各式各樣感測器機器人的研究也跟著蓬勃發展。受限於氣體感測器開始發展的時間較其他感測器晚,直到近年來機器嗅覺的相關發展迅速,基於氣體感測器的機器人氣體追蹤系統也隨之起步,氣體追蹤演算法遂成為一個新的研究主題。
    本研究為以輪型機器人系統為基礎,進行氣體源追蹤演算法之開發。機器人配置五組氣體感測器及風感測器,藉此能夠觀測周遭環境。在過去的研究中發現,氣體濃度值固然是氣體追蹤時最重要的資訊,但風的資訊往往也佔了很重要的角色,前人演算法引入了風向的資訊後也大幅增進演算法效率與成功率。同時,透過觀察水中與飛行動物氣體追蹤軌跡與行為模式的啟發,我們利用了機器人周遭的氣體濃度、風向、風速設計了一種新的演算法,演算法的行為模式以水中與空中動物的氣體追蹤軌跡方向為參考。為了能有效比較不同演算法間的效率與差異,本研究將演算法在實體機器人上實踐,並建立了一套可控制的半開放實驗環境與觀測機制。
    本研究所提出之演算法使用了五組氣體感測器量測機器人前方氣體濃度分佈的趨勢,再加入由風向與風速產生的影響,算出一組包含方向與大小的追蹤趨勢參考向量,機器人再依據這組向量,透過前進馬達的速差與第三輪速度的改變,在機器人前進的同時調整機器人的方向,以進行氣體源追蹤任務。在完整展示系統與演算法後,我們呈現了實體機器人在實驗環境下不同演算法間的比較結果,除了本演算法外,還包括了Casting、Surge-spiral與Surge-cast演算法。本研究所提出之氣體追蹤演算法與前人演算法相比,在有高成功率的同時,也能維持較高的效率,能確實有效進行氣體源的追蹤並找出氣體源位置。


    In this research we present a new system and a new algorithm to achieve odor source tracking task, based upon mobile robot with 5 gas sensors.
    Research on odor source localization based on mobile robots suggest that although the gas sensor is the most essential part in tracking algorithm, information from wind sensor also take a critical role. Former approaches to this work brought wind direction into algorithms and significantly improved the efficiency and success rate in laminar flow environment.
    Inspired by this observation, we build a mobile robot system with a new odor tracking algorithm. The metal oxide (MOX) semiconductor sensors, wind sensor, distance sensors, and microcontroller are used to implement the task. By adding wind speed as a factor, we propose a new algorithm based on odor concentration of 5 MOX sensors and wind information to achieve the odor following task. In order to evaluate the effect of our algorithm, we compare it with several former algorithms using the robot in the controlled environment.
    After a complete derivation of our system and algorithm, we present the results of several experiments that compare the success rate, distance overhead and effective capacity of searching and tracking of proposed methods with other leading approaches. The experimental results showed the improvement in tracking efficiency and the direction towards the odor source is given appropriately with our system and algorithm.

    中文摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 ix 第1章 緒論 1 1.1 研究前言 1 1.2 自然環境之氣體偵測 3 1.2.1 自然環境之氣體分佈 3 1.2.2 氣體模型 5 1.3 氣體追蹤輪型機器人簡介 7 1.4 研究動機與目的 9 1.5 章節介紹 10 第2章 文獻回顧 11 2.1 生物嗅覺追蹤機制 11 2.2 氣體追蹤演算法之實現案例 14 2.2.1 Casting 追蹤演算法 15 2.2.2 Surge-Spiral追蹤演算法 16 2.2.3 Surge-Cast追蹤演算法 17 2.2.4 演算法之比較與討論 18 第3章 實驗系統架構 20 3.1 整體系統架構概觀 20 3.2 機器人之硬體架構 22 3.3 機器人之控制核心 25 3.4 機器人之感測系統 27 3.4.1 金屬氧化物氣體感測器 27 3.4.2 超音波風向風速感測器 29 3.5 系統之軟體與周邊架構 30 第4章 實驗環境之架構 31 4.1 實驗環境規劃 31 4.2 環境參數之量測 34 第5章 提高演算法效率之設計與實現 41 5.1 演算法流程圖 41 5.1.1 初始化設定與動作 42 5.1.2 計算追蹤趨勢之方法 44 5.1.3 趨勢對應行為分類與歸納 48 5.1.4 氣體源判斷機制 50 5.2 演算法實驗與流程 50 5.2.1 實驗前置動作 51 5.2.2 實驗設計與流程 56 5.3 實驗結果與比較 60 5.4 實驗討論 68 第6章 結論與未來工作 69 參考文獻 70

    [1] H. Ishida and T. Moriizumi, "Machine olfaction for mobile robots," Handbook of Machine Olfaction: Electronic Nose Technology, pp. 399-417, 2004.
    [2] V. H. Bennetts, A. J. Lilienthal, A. A. Khaliq, V. P. Sesé, and M. Trincavelli, "Towards Real-World Gas Distribution Mapping and Leak Localization Using a Mobile Robot with 3D and Remote Gas Sensing Capabilities."
    [3] S. Kang, W. Lee, M. Kim, and K. Shin, "ROBHAZ-rescue: rough-terrain negotiable teleoperated mobile robot for rescue mission," in Safety, Security and Rescue Robotics, Workshop, 2005 IEEE International, 2005, pp. 105-110.
    [4] A. J. Lilienthal, A. Loutfi, and T. Duckett, "Airborne chemical sensing with mobile robots," Sensors, vol. 6, pp. 1616-1678, 2006.
    [5] G. T. CSANADY, Turbulent Diffusion in the Environmnet vol. 3: Springer, 1973.
    [6] P. J. Roberts and D. R. Webster, "Turbulent diffusion," Environmental Fluid Mechanics–Theories and Applications, pp. 7-45, 2002.
    [7] A. Lozano, B. Yip, and R. Hanson, "Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence," Experiments in fluids, vol. 13, pp. 369-376, 1992.
    [8] H. Ishida, T. Nakamoto, and T. Moriizumi, "Remote Sensing of Gas/Odor Source Location and Concentration Distribution Using Mobile System," Sensors and Actuators B: Chemical, vol. 49, pp. 52-57, 1998.
    [9] J. G. Monroy, J. González-Jiménez, and J. L. Blanco, "Overcoming the Slow Recovery of MOX Gas Sensors through a System Modeling Approach," Sensors, vol. 12, pp. 13664-13680, 2012.
    [10] H. Ishida, Y. Wada, and H. Matsukura, "Chemical Sensing in Robotic Applications: A Review," Sensors Journal, IEEE, vol. 12, pp. 3163-3173, 2012.
    [11] T. Lochmatter, X. Raemy, L. Matthey, S. Indra, and A. Martinoli, "A Comparison of Casting and Spiraling Algorithms for Odor Source Localization in Laminar Flow," presented at the 2008 IEEE International Conference on Robotics and Automation, Pasadena, California, 2008.
    [12] T. Lochmatter and A. Martinoli, "Tracking Odor Plumes in a Laminar Wind Field with Bio-inspired Algorithms," in Experimental robotics, 2009, pp. 473-482.
    [13] N. J. Vickers, "Mechanisms of animal navigation in odor plumes," The Biological Bulletin, vol. 198, pp. 203-212, 2000.
    [14] M. A. Frye, "Multisensory systems integration for high-performance motor control in flies," Current Opinion in Neurobiology, vol. 20, pp. 347-352, 2010.
    [15] J. H. Fabre, 法布爾昆蟲記全集7, 2002.
    [16] W. C. Agosta, Chemical Communication: The Language of Pheromones: Scientific American Library, 1992.
    [17] M. A. Willis, "Chemical Plume Tracking Behavior in Animals and Mobile Robots," Navigation, vol. 55, p. 127, 2008.
    [18] H. Ishida, K.-i. Suetsugu, T. Nakamoto, and T. Moriizumi, "Study of autonomous mobile sensing system for localization of odor source using gas sensors and anemometric sensors," Sensors and Actuators A: Physical, vol. 45, pp. 153-157, 1994.
    [19] J.-D. Kim, H.-G. Byun, and C.-H. Hong, "Mobile Robot with Artificial Olfactory Function," Transaction on control, automation and systems engineering, vol. 3, pp. 223-228, 2001.
    [20] W. Li, J. A. Farrell, and R. T. Card, "Tracking of fluid-advected odor plumes: strategies inspired by insect orientation to pheromone," Adaptive Behavior, vol. 9, pp. 143-170, 2001.
    [21] A. T. Hayes, A. Martinoli, and R. M. Goodman, "Distributed odor source localization," Sensors Journal, IEEE, vol. 2, pp. 260-271, 2002.
    [22] 普特企業有限公司. (2012). 重載自走車專用直流減速馬達 Available: http://www.playrobot.com/cart/shop.php?id=307
    [23] K. Corporation, "Transwheel Series 4000," ed: Kornylak Corporation, 2012.
    [24] P. Corporation, "Pololu Maestro Servo Controller User's Guide," ed: Pololu Corporation, 2013.
    [25] P. Inc., "HB-25 Motor Controller," ed: Parallax Inc., 2012.
    [26] P. Inc., "Propeller P8X32A Datasheet," ed: Parallax Inc., 2007.
    [27] S. Electronics, "BlueSMiRF v1," in Embedd Bluetooth Serial RF Link, ed: SparkFun Electronics, 2007.
    [28] F. Engineering, "TGS 822 Datasheet," ed: Figaro Engineering, 2012.
    [29] Gill, "WindSonic User Manual," ed: Gill Instruments Limited, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE