研究生: |
洪苡晴 Hung, Yi-Ching. |
---|---|
論文名稱: |
具穀胱甘肽響應之含雙硫代馬來醯亞胺線性-樹枝狀共聚物應用於藥物載體 Dithiomaleimide-based Linear-Dendritic Block Copolymers as GSH Responsive Drug Carrier |
指導教授: |
彭之皓
Peng, Chi-How |
口試委員: |
陳俊太
Chen, Jiun-Tai 王潔 Wang, Jane |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 高分子微胞 、硫醇置換 、穀胱甘肽響應 、阿黴素 |
外文關鍵詞: | micelle, thiol-exchange, glutathione-response, doxorubicin |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為改善癌症治療中化學療法缺乏專一性之問題,且同時提高化療藥物在人體之療效,本研究設計具不同親水鏈段、相同疏水鏈段之兩親性高分子mPEG44-DTPM與mPEG113-DTPM,並探討其自組裝結構差異與藥物輸送效果的影響。此高分子系統以馬來醯亞胺作為刺激響應節點,其2號位與3號位之碳硫鍵具有與硫醇類分子進行硫醇置換的能力,並藉由親/疏水作用力於水相自組裝形成內層為疏水核心之奈米載體,用於將阿黴素 (doxorubicin, DOX) 靶向輸送至癌細胞,藉由癌細胞內之高穀胱甘肽的環境,以硫醇置換方式釋放所攜帶之藥物。結果顯示mPEG44-DTPM由於疏水鏈段佔比較大,自組裝形成微胞後之穩定度優於mPEF113-DTPM,然而將阿黴素包覆於其中後,皆能穩定微胞結構。最後,分別模擬穀胱甘肽在癌細胞 (10 mM) 與生理環境 (10 μM) 的濃度作為藥物釋放實驗之條件,結果可得兩高分子微胞在濃度為10 mM穀胱甘肽環境中的藥物釋放量皆高於濃度為10 μM 之穀胱甘肽環境的釋放量,顯示此高分子系統於穀胱甘肽響應下皆能成功釋放負載於其中的藥物,以達到提升選擇性與療效之目的。
The study aims to improve the lack of specificity for chemotherapy in cancer treatments and the curative effect of antineoplastic drugs in human body. With amphiphilic polymers mPEG44-DTPM and mPEG113-DTPM as drug carriers, the differences in their self-assembled structures and the efficiency of drug delivery are put into discussion. In this drug delivery system, maleimide served as the stimulative node, where thioether bonds in the resulting dithiomaleimide conjugate could be substituted by excess thiols for being used as a GSH-responsive moiety. Drug carriers targeting the delivery of doxorubicin (DOX) into the cancer cell would release the encapsulated drug due to the high concentration of GSH (10 mM) in the cell. According to the experiment, mPEG44-DTPM is more stable than mPEG113-DTPM as drug carrier in the physiological environment. Both DOX-encapsulated polymers achieved nearly 50% of drug loading efficiency. The in vitro releasing profile of DOX-encapsulated mPEG44-DTPM and mPEG113-DTPM were respectively 6.2 μg and 7.3 μg at 10 mM GSH and 3.6 μg and 4.5 μg at 10 μM GSH.
1. Gilman, A., Am. J. Surg. 1963, 105, 574-578.
2. Lee, E. Y. H. P.; Muller, W. J., Cold Spring Harb Perspect Biol 2010, 2, a003236.
3. Cooper, G. M., The Cell: A Molecular Approach (2nd edition). Sinauer Associates Inc: Massachusetts, 2000; p.689.
4. Lodish, H. B., A.; Zipursky, S. L.; Matsudaira, P.; Baltimore, D.; Darnell, J, Molecular Cell Biology, 4th edition. w. h. freeman: New York, 2000; p.1184.
5. Silverstein, A. M., Nat. Immunol. 2001, 2, 279-281.
6. Farber, S.; Diamond, L. K.; Mercer, R. D.; Sylvester, R. F.; Wolff, J. A., N. Engl. J. Med. 1948, 238, 787-793.
7. Zhu, H.; Sarkar, S.; Scott, L.; Danelisen, I.; Trush, M. A.; Jia, Z.; Li, Y. R., React. oxyg. species (Apex, N.C.) 2016, 1, 189-198.
8. Morrison, B. J.; Morris, J. C.; Steel, J. C., Target Oncol 2013, 8, 159-172.
9. Bajetta, E.; Zilembo, N.; Di Leo, A.; Buzzoni, R.; Maria Giulia, Z.; Biganzoli, L.; Noberasco, C., Cancer Treat. Rev. 1994, 20, 241-258.
10. Brower, V., J. Natl. Cancer Inst. 2015, 107,
11. Rajkumar, S. V.; Witzig, T. E., Cancer Treat. Rev. 2000, 26, 351-362.
12. Singal, R.; Singal, R. P.; Mittal, A.; Sangwan, S.; Gupta, N., Indian J Surg 2011, 73, 82-84.
13. Clemons, M.; Danson, S.; Howell, A., Cancer Treat. Rev. 2002, 28, 165-180.
14. Eisen, A.; Trudeau, M.; Shelley, W.; Messersmith, H.; Pritchard, K. I., Cancer Treat. Rev. 2008, 34, 157-174.
15. Turner, K. M.; Deshpande, V.; Beyter, D.; Koga, T.; Rusert, J.; Lee, C.; Li, B.; Arden, K.; Ren, B.; Nathanson, D. A.; Kornblum, H. I.; Taylor, M. D.; Kaushal, S.; Cavenee, W. K.; Wechsler-Reya, R.; Furnari, F. B.; Vandenberg, S. R.; Rao, P. N.; Wahl, G. M.; Bafna, V.; Mischel, P. S., Nature 2017, 543, 122-125.
16. Matsumura, Y.; Maeda, H., Cancer Res. 1986, 46, 6387.
17. Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R., Nat. Nanotechnol. 2007, 2, 751-760.
18. Cheng, R.; Meng, F.; Deng, C.; Zhong, Z., Nano Today 2015, 10, 656-670.
19. Warburg, O. H. D., F., The metabolism of tumours. Constable: London, 1930.
20. Gatenby, R. A.; Gillies, R. J., Nat. Rev. Cancer 2004, 4, 891-899.
21. Trachootham, D.; Alexandre, J.; Huang, P., Nat. Rev. Drug Discov. 2009, 8, 579-591.
22. Varkouhi, A. K.; Scholte, M.; Storm, G.; Haisma, H. J., J. Control. Release 2011, 151, 220-228.
23. Li, W.; Nicol, F.; Szoka, F. C., Adv. Drug Deliv. Rev. 2004, 56, 967-985.
24. Zelphati, O.; Szoka, F. C., Jr., Proc Natl Acad Sci U S A 1996, 93, 11493-11498.
25. Pack, D. W.; Hoffman, A. S.; Pun, S.; Stayton, P. S., Nat. Rev. Drug Discov. 2005, 4, 581-593.
26. Cabral, H.; Nakanishi, M.; Kumagai, M.; Jang, W.-D.; Nishiyama, N.; Kataoka, K., Pharm. Res. 2009, 26, 82-92.
27. Zhang, L.; Eisenberg, A., Science 1995, 268, 1728.
28. Harris, J. M.; Chess, R. B., Nat. Rev. Drug Discov. 2003, 2, 214-221.
29. Discher, D. E.; Ahmed, F., Annu. Rev. Biomed. Eng. 2006, 8, 323-341.
30. Torchilin, V. P., Nat. Rev. Drug Discov. 2005, 4, 145-160.
31. Seo, S. E.; Hawker, C. J., Macromolecules 2020, 53, 3257-3261.
32. Fan, X.; Zhao, Y.; Xu, W.; Li, L., Mater. Sci. Eng. C 2016, 62, 943-959.
33. D'Emanuele, A.; Attwood, D., Adv. Drug Deliv. Rev. 2005, 57, 2147-2162.
34. Nguyen, P. M.; Hammond, P. T., Langmuir 2006, 22, 7825-7832.
35. Newkome, G. R.; Yao, Z.; Baker, G. R.; Gupta, V. K., J. Org. Chem. 1985, 50, 2003-2004.
36. Newkome, G. R.; Baker, G. R.; Saunders, M. J.; Russo, P. S.; Gupta, V. K.; Yao, Z.-q.; Miller, J. E.; Bouillion, K., J. Chem. Soc., Chem. Commun. 1986, 752-753.
37. Gitsov, I.; Wooley, K. L.; Hawker, C. J.; Ivanova, P. T.; Frechet, J. M. J., Macromolecules 1993, 26, 5621-5627.
38. Blair, S. L.; Heerdt, P.; Sachar, S.; Abolhoda, A.; Hochwald, S.; Cheng, H.; Burt, M., Cancer Res. 1997, 57, 152.
39. Shu, X. Z.; Liu, Y.; Palumbo, F.; Prestwich, G. D., Biomaterials 2003, 24, 3825-3834.
40. Zhou, Z.; Ma, X.; Jin, E.; Tang, J.; Sui, M.; Shen, Y.; Van Kirk, E. A.; Murdoch, W. J.; Radosz, M., Biomaterials 2013, 34, 5722-5735.
41. Du, Y.; Chen, W.; Zheng, M.; Meng, F.; Zhong, Z., Biomaterials 2012, 33, 7291-7299.
42. Li, S.; Meng, F.; Wang, Z.; Zhong, Y.; Zheng, M.; Liu, H.; Zhong, Z., Eur. J. Pharm. Biopharm. 2012, 82, 103-111.
43. Zhang, Y.; Xiao, C.; Li, M.; Chen, J.; Ding, J.; He, C.; Zhuang, X.; Chen, X., Macromol. Biosci. 2013, 13, 584-594.
44. Blasco, E.; Serrano, J. L.; Piñol, M.; Oriol, L., Macromolecules 2013, 46, 5951-5960.
45. Huang, Y.; Dong, R.; Zhu, X.; Yan, D., Soft Matter 2014, 10, 6121-6138.
46. Jochum, F. D.; Theato, P., ChemComm 2010, 46, 6717-6719.
47. Sun, L.; Ma, X.; Dong, C.-M.; Zhu, B.; Zhu, X., Biomacromolecules 2012, 13, 3581-3591.
48. Menon, S.; Thekkayil, R.; Varghese, S.; Das, S., J. Polym. Sci. A Polym. Chem. 2011, 49, 5063-5073.
49. Blasco, E.; Schmidt, B. V. K. J.; Barner-Kowollik, C.; Piñol, M.; Oriol, L., Polym. Chem. 2013, 4, 4506-4514.
50. Torchilin, V., Eur. J. Pharm. Biopharm. 2009, 71, 431-444.
51. Kim, Y. S.; Gil, E. S.; Lowe, T. L., Macromolecules 2006, 39, 7805-7811.
52. Stover, T. C.; Kim, Y. S.; Lowe, T. L.; Kester, M., Biomaterials 2008, 29, 359-369.
53. Schelté, P.; Boeckler, C.; Frisch, B.; Schuber, F., Bioconjug. Chem. 2000, 11, 118-123.
54. Vanderhooft, J. L.; Mann, B. K.; Prestwich, G. D., Biomacromolecules 2007, 8, 2883-2889.
55. Mather, B. D.; Viswanathan, K.; Miller, K. M.; Long, T. E., Prog. Polym. Sci. 2006, 31, 487-531.
56. Youziel, J.; Akhbar, A. R.; Aziz, Q.; Smith, M. E. B.; Caddick, S.; Tinker, A.; Baker, J. R., Org. Biomol. Chem. 2014, 12, 557-560.
57. Nair, D. P.; Podgórski, M.; Chatani, S.; Gong, T.; Xi, W.; Fenoli, C. R.; Bowman, C. N., Chem. Mater. 2014, 26, 724-744.
58. Northrop, B. H.; Frayne, S. H.; Choudhary, U., Polym. Chem. 2015, 6, 3415-3430.
59. Saito, G.; Swanson, J. A.; Lee, K.-D., Adv. Drug Deliv. Rev. 2003, 55, 199-215.
60. Güçlü, K.; Özyürek, M.; Güngör, N.; Baki, S.; Apak, R., Anal. Chim. Acta 2013, 794, 90-98.
61. Smith, M. E. B.; Schumacher, F. F.; Ryan, C. P.; Tedaldi, L. M.; Papaioannou, D.; Waksman, G.; Caddick, S.; Baker, J. R., J. Am. Chem. Soc. 2010, 132, 1960-1965.
62. Robin, M. P.; Wilson, P.; Mabire, A. B.; Kiviaho, J. K.; Raymond, J. E.; Haddleton, D. M.; O’Reilly, R. K., J. Am. Chem. Soc. 2013, 135, 2875-2878.
63. Mabire, A. B.; Robin, M. P.; Quan, W.-D.; Willcock, H.; Stavros, V. G.; O'Reilly, R. K., ChemComm 2015, 51, 9733-9736.
64. Liang, L.; Astruc, D., Coord. Chem. Rev. 2011, 255, 2933-2945.
65. Jones, M. W.; Strickland, R. A.; Schumacher, F. F.; Caddick, S.; Baker, J. R.; Gibson, M. I.; Haddleton, D. M., ChemComm 2012, 48, 4064-4066.
66. Wang, H.; Xu, M.; Xiong, M.; Cheng, J., ChemComm 2015, 51, 4807-4810.
67. König, H. M.; Gorelik, T.; Kolb, U.; Kilbinger, A. F. M., J. Am. Chem. Soc. 2007, 129, 704-708.
68. Lesage de la Haye, J.; Zhang, X.; Chaduc, I.; Brunel, F.; Lansalot, M.; D'Agosto, F., Angew. Chem. Int. Ed. 2016, 55, 3739-3743.
69. Shi, Y.; van Steenbergen, M. J.; Teunissen, E. A.; Novo, L. s.; Gradmann, S.; Baldus, M.; van Nostrum, C. F.; Hennink, W. E., Biomacromolecules 2013, 14, 1826-1837.
70. Kim, E.; Koo, H., Chem. Sci. 2019, 10, 7835-7851.
71. Caumul, p.; Boodhoo, K.; Burkutally, S. B.; Seeruttun, S.; Namooya, N.; Ramsahye, N.; Joondan, N., Res. j. pharm. 2014, 5, 494-509.
72. Shin, J.-A.; Oh, S.-J.; Lee, H.-Y.; Lim, Y.-G., Catal. Sci. Technol. 2017, 7, 2450-2456.