簡易檢索 / 詳目顯示

研究生: 林聖儒
Lin, Shen-Ju
論文名稱: 基於影像小區塊方式之性別辨識
Patch-Based Gender Classification
指導教授: 黃仲陵
Huang, Chung-Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 50
中文關鍵詞: 性別辨識
外文關鍵詞: Gender Classification
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們使用一貝氏估計的架構去針對人臉區塊相似度及由訓練資料所累積的分布來達到對人臉照片做性別辨識的目的。我們的人臉性別辨識主要包含兩個程序。第一個程序是先使用Haar-like特徵從測試照片中尋找人臉候選者,接著使用尺寸濾波器及膚色偵測去除掉非人臉候選者。另外,我們利用圖像濾波及權重遮罩來得到標準化的照片。第二個程序主要利用預訂圖像資料庫及訓練照片來辨別出人臉測試照片的性別,這些人臉照片包含大量的變異例如光線、表情、人臉角度、背景等變化。我們認為圖像資料庫的組成對於由訓練資料所建立的男性及女性累積分布有密切的關係。我們提出一個以特徵臉(eigenface)與K均值分群法的結合方式,從我們自行收集並分類的男性及女性照片資料庫中選取出具有代表性的男性及女性照片,接著由剩餘的照片視為訓練照片並將其特性根據不同圖像資料庫的數量及組成建立出對應的男性及女性累積分布。
    我們去對兩種圖像資料庫選擇方法(特徵臉與K均值分群法的結合以及隨機挑選)來做評估並去觀察性別辨識準確度的差異,這裡我們使用的測試照片包括從網路上收集1000張大量變異程度的男女照片、從FERET人臉資料庫得到的1364張均勻光線正面男女照片及Bao face database的團體男女照片。從實驗結果得知我們所提出來的圖像資料庫選擇方法相較於隨機挑選方法,根據不同張數的圖像資料庫及解析度的實驗條件下,在大多數的情況下擁有較好的性別辨識準確度。


    In the thesis, we employ a Bayesian estimation framework that exploit image patch similarity and accumulated distribution to reach the goal of predicting the gender from the facial images. Our facial gender classification consists of two processes. The first process searches the face candidates using Haar-like feature from the images, and uses the size filter and skin color detection to remove the non-face candidates. In addition, we apply the image filtering and weighting mask to obtain the normalized facial images. The second process uses the predefined library and training images to identify human gender of the test images. The facial images require a large range of variation including lighting, expression, pose, background…etc. We consider that the formation of library images has a close relationship with the accumulated distribution about gender (male, female). We propose a library images selection scheme to choose the discriminative male and female images, which is based on the method of eigenface with K means clustering, then build the male and female accumulated distribution according to the characteristic of the rest part of training male and female images. We evaluate the two library selection method, eigenface with clustering method and random method, and observe the difference of gender prediction accuracy using 1000 web facial images of male and female, the color FERET face database which contain 1364 regular frontal facial images of male and female, and the Bao face database group images of male and female. The experimental results demonstrate that our proposed method is better than the random selection in most cases.

    Contents Abstract...........................................................................................................................i Contents.........................................................................................................................ii List of Figures...............................................................................................................iv List of Tables................................................................................................................vi Chapter 1 Introduction………………………………………………1 1.1 Motivation........................................................................................................1 1.2 Related Works..................................................................................................2 1.3 System Overview.............................................................................................5 1.4 The Organization of Thesis..............................................................................7 Chapter 2 Facial Image Extraction and Image Enhancement…….8 2.1 Face Detection..................................................................................................8 2.2 Non-Face Removal………………..………………………………………….9 2.2.1Size Filter……….……………………………………………………9 2.2.2Skin Color Detection….…………………………………………....10 2.3 Image Enhancement………..………………………………………….……11 2.3.1Illumination Adjustment……………………………………………11 2.3.2Background Component Removal..……………………………....13 2.4 Image Normalization.…………………………………………………....14 Chapter 3 Patch-Based Gender Classification and Library Selection Scheme.....................................................................................................16 3.1 The Patch-Based Approach............................................................................16 3.2 Bayesian Estimation on Gender Classification.............................................18 3.2.1 Training Process…………………….………………………………19 3.2.2 Inference Process...............……………………………………......24 3.3 Library Selection Scheme.............................................................................30 3.3.1 Eigenface with Clustering Selection Scheme.....................................31 3.3.2 Random Selection Scheme.................................................................34 Chapter 4 Experimental Results and Discussions...............................35 4.1 Experimental Data and Parameter Settings……………..………………….35 4.2 Experimental Results……………………...………………………………..37 Chapter 5 Conclusion and Future Works............................................47 References...............................................................................................48

    References
    [1] J. Aghajanian, J. Warrell, S.J.D. Prince, P. Li and J.L. Rohn and B.Baum “Patch-based Within-Object Classification,” IEEE 12th International Conference on Computer Vision, 2009.

    [2] Saatci, Y., Town, C., “Cascaded Classification of Gender and Facial
    Expression Using Active Appearance Models”. In: Proc. 7th International. Conf. on
    Automatic Face and Gesture Recognition (FGR’06), pp. 393–400. April 2006.

    [3] E Makinen, R Raisamo, “Evaluation of Gender Classification Methods with Automatically Detected and Aligned Faces”. IEEE Trans. On Pattern Analysis and Machine Intelligence, vol. 30, no. 3, pp. 541-547, March 2008.

    [4] B. Moghaddam, M. H. Yang., “Learning Gender with Support Faces”. IEEE Trans. On Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp. 707-711, May 2002.

    [5] H. C. Lian, B. L. Lu, “Multi-View Gender Classification Using Multi-Resolution Local Binary Patterns and Support Vector Machines” International Journal of Neural Systems, Volume: 17, Issue: 6, pp. 479-487, 2007

    [6] B. Xia; H. Sun; B. L. Lu, “Multi-View Gender Classification Based on Local Gabor Binary Mapping Pattern and Support Vector Machines” IEEE International Joint Conference on Neural Networks , pp. 3388 - 3395, 2008.

    [7] Y. Fang, Z. Wang “Improving LBP Features For Gender Classification” In: Proc. Of the International Conference On Wavelet Analysis and Pattern Recognition, pp. 373 - 377, August 2008.

    [8] Jing Li and Bao-Liang Lu, “A Framework for Multi-view Gender Classification” Neural Information Processing, 2008 - Springer.

    [9] Xue-Ming Leng, Yi-Dind Wang, “Gender Classification Based on Fuzzy SVM” In: Proc. Of the 7th International Conference On Machine Learning and Cybernetics, pp. 1260 - 1264, July 2008.

    [10] Shumeet Baluja, Henry Rowley, “Boosting Sex Identification Performance ” In International Journal of Computer Vision, vol. 71, no. 1, pp. 111-119, 2007.

    [11] Bau-Cheng Shen, Chu-Song Chen, Hui-Huang Hsu. “Fast Gender Recognition by Using a Shared Integral Image Approach” IEEE International Conference on Acoustics, Speech and Signal Processing, 2009.

    [12] Zhen-Hua Wang, Zhi-Chun Mu, “Gender Classification Using Selected Independent-Features Based On Genetic Algorithm” In: Proc. Of the 8th International Conference On Machine Learning and Cybernetics, pp. 394- 398, July 2009.

    [13] Y Andreu, R Mollineda, “On the Complementarity of Face Parts for Gender Recognition” Progress in Pattern Recognition, Image Analysis and Applications, Lecture Notes in Computer Science, Volume 5197, pp. 252-260, 2008.

    [14] Li Lu, Ziyi Xu, Pengfei Shi, “Gender Classification of Facial Images Based on Multiple Facial Regions” World Congress on Computer Science and Information Engineering, 2009

    [15] Matthew Toews, Tal Arbel. “Detecting, Localizing and Classifying Visual Traits from Arbitrary Viewpoints Using Probabilistic Local Feature Modeling” Analysis and Modeling of Faces and Gestures, 2007 – Springer

    [16] Matthew Toews, Tal Arbel. “Detection, Localization, and Sex Classification of Faces from Arbitrary Viewpoints and under Occlusion” IEEE Trans. On Pattern Analysis and Machine Intelligence, vol. 31, no. 9, pp. 1567-1581, September 2009.

    [17] Zhen Li, Xi Zhou, Huang, T.S., “Spatial Gaussian Mixture Model for Gender Recognition” IEEE International Conference on Image Processing, pp.45-48 , November 2009.

    [18] Viola, P., Jones, M., “Rapid object detection using a boosted cascade of simple features” Proceedings of Conference on Computer Vision and Pattern Recognition, pp. 511-518,Deccember 2001

    [19] OpenCV library, http://sourceforge.net/projects/opencvlibrary/

    [20] Lienhart, R., Maydt, J., “An Extended Set of Haar-like Features for Rapid Object Detection” IEEE International Conference on Image Processing, vol. 1, pp.900-903 , June 2002.

    [21] 陳曉瑩, “即時多角度人臉偵測 Real-time Multi-pose Face Detection” 國立清華大學電機工程系所.

    [22] R. C. Gonzalez and R. E. woods, Digital Image Processing (Second Edition), Prentice – Hall, 2002.

    [23] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification, second edition. Wiley, 2001.

    [24] Bishop, C. M., Pattern Recognition And Machine Learning, Springer, 2006.

    [25] Turk, M. and A. Pentland, “Eigenfaces for recognition,” Journal of Cognitive Neuroscience, Vol.3, No.1, pp.71-86, 1991.

    [26] 劉欣慈, “基於Fisherface演算法之人臉辨識系統實現 Implementation of a Face Recognition System Base on the Fisherface Algorithm” 國立交通大學電機與控制工程系所.

    [27] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller, “Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments” University of Massachusetts, Amherst, Technical Report 07-49, October, 2007.

    [28] Anelia Angelova, Yaser Abu-Mostafa, Pietro Perona, “Pruning Training Sets for Learning of Object Categories” , Proc. IEEE Conference on Computer Vision and Pattern Recognition , 2005.

    [29] The color FERET database, http://face.nist.gov/colorferet/

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE