簡易檢索 / 詳目顯示

研究生: 劉育容
Liu, Yu-Rong
論文名稱: 介入性放射診療之醫療工作人員眼球水晶體劑量評估
Assessing eye-lens doses of medical staffs in interventional radiology and cardiology procedures
指導教授: 許芳裕
Hsu, Fang-Yuh
許靖涵
Hsu, Ching-Han
口試委員: 游澄清
Yu, Cheng-Ching
趙自強
Chao, Tsi-Chian
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 65
中文關鍵詞: 眼球水晶體劑量介入性放射診療輻射工作人員之曝露熱發光劑量計
外文關鍵詞: eye-lens dose, interventional radiology, occupational exposure, TLD
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 國際放射防護委員會(International Commission on Radiological Protection,ICRP)在2012年提出,將工作人員眼球水晶體之等價劑量限制由一年內不得超過150毫西弗,調降為五年加總不得超過100毫西弗(年平均最好不超過20毫西弗),因此,如何準確地評估出眼球水晶體劑量成為國際間近來熱門的議題。在所有輻射工作人員之中,又以介入性放射診療之醫師為得到輻射誘發白內障的高危險群。本研究主要目的為評估台灣的介入性放射診療醫療工作人員的眼球水晶體劑量,將兩種熱發光劑量計放置於侖道假體之眼球周遭與人員劑量佩章放置於侖道假體身上;將模擬輻射工作人員的侖道假體置於介入性診療之透視X光機的攝影室裡接受曝露,針對不同的照射條件與不同的劑量劑之結果比較。
      結果顯示於低能光子輻射場下,不同幾何的熱發光劑量計會造成不同的反應,需要給予適當的修正。而人員劑量佩章常規配戴位置所評估出來的眼球水晶體的劑量值,並不適合當作正確的眼球水晶體劑量依據。最後,本研究推估的輻射工作人員年眼球劑量的結果顯示,介入性放射診療醫療人員的眼睛水晶體為輻射曝露的高危險群,年劑量皆高於新眼球水晶體年限值,希望藉由本研究能促使介入性診療輻射工作人員眼球水晶體防護與輻射曝露過高之議題更受重視,進而想辦法改善現況並更加關注輻射工作人員眼睛水晶體的安全議題。


    The International Commission on Radiological Protection (ICRP) recommended that the equivalent dose limit for the lens of the eye be decreased from 150 mSv/y (ICRP, 2007) to 20 mSv/y averaged over five years (ICRP, 2011). How to accurately measure the eye-lens dose has, therefore, been an issue of interest recently. Interventional radiologists are at a higher risk of radiation-induced eye injury, such as cataracts, than all other occupational radiation workers. The main objective of this study is to investigate the relationship between the doses to the eye lenses of interventional radiologists measured by different commercial eye-lens dosimeters. This study measured a reference eye-lens dose, which involved placing thermoluminescent dosimeter (TLD) chips at the surface of the eye of the Rando Phantom, and the TLD chips were covered by a 3-mm-thick tissue-equivalent bolus. Commercial eye-lens dosimeters, such as a headband dosimeter and standard personnel dose badges, were placed at the positions recommended by the manufacturers. The results show that the personnel dose badge is not an appropriate dosimeter for evaluating eye-lens dose when it is worn on the chest inside a lead apron. Dose deviations for different dosimeters are discussed and presented in this study. Besides, the eye-lens dose measured by the headband dosimeter may estimate a higher dose to the eye lens than the dose measured by TLD-100H chips due to difference of physical TLD geometry and difference response in a low-energy photon filed. Therefore, the correction factor of energy dependence for TLD is important. Additionally, the issue of eye-lens dose accepted by interventional radiologists in Taiwan should be studied in the near future as their doses are already over the new dose limit.

    中文摘要 I ABSTRACT II 致謝 IV 目次 V 表目錄 VIII 圖目錄 X 第一章 緒論 1 1.1 前言 1 1.2 劑量限值的變化 1 1.3 眼球水晶體與白內障 3 1.4 介入性放射診療 5 1.5 文獻回顧 7 1.5.1 眼球水晶體劑量監測方法 7 1.5.2 介入性放射診療工作人員受曝劑量值 8 1.6 研究目的 10 第二章 材料與方法 11 2.1 劑量計種類 11 2.1.1 晶片式熱發光劑量計 11 2.1.2 頭帶式眼球水晶體劑量計 14 2.1.3 人員劑量佩章 16 2.2 劑量計的篩選與校正 17 2.2.1 篩選 17 2.2.2 劑量校正 20 2.3 實驗條件與設計 23 2.3.1 腹部與頭部的血管攝影 23 2.3.2 心導管與四肢血管攝影 25 2.3.3 劑量計之位置與實驗次數 29 2.3.4 鉛眼鏡的防護 30 2.4 蒙地卡羅模擬 31 第三章 結果與討論 34 3.1 輻射工作人員眼球水晶體劑量 34 3.1.1 原始劑量(未進行能量依恃性修正) 34 3.1.2 輻射能量與TLD響應比 36 3.1.3 能量依恃性修正 43 3.1.4 眼球水晶體劑量 47 3.1.5 輻射工作人員的年限值推估 50 3.2 人員劑量佩章 51 3.3 鉛眼鏡的防護 54 第四章 結論 56 參考文獻 58 附錄一、蒙地卡羅模擬程式碼 62 附錄二、A100H,E與A707H,E的詳細數據 63 附錄三、T100H,E與T707H,E的詳細數據 64 附錄四、R100H,E 與R707H,E的詳細數據 65

    1. ICRP, ICRP PUBLICATION 118: ICRP Statement on Tissue Reactions and Early and Late Effects of Radiation in Normal Tissues and Organs – Threshold Doses for Tissue Reactions in a Radiation Protection Context, in Annals of the ICRP. 2012. p. 11, 116-139, 293-302.
    2. Brown, N.P., The lens is more sensitive to radiation than we had believed. The British Journal of Ophthalmology, 1997. 81(4): p. 257-257.
    3. NCRP, Radiation Protection Guidance for Activities in Low Earth Orbit. No.132. 2000, National Council on Radiation Protection and Measurements, Bethesda, MD. p. 83-88.
    4. ICRP, Recommendations of the International Commission on Radiological Protection.ICRP Publication 60. 1991, Ann. ICRP 21 (1-3). p. 41-46.
    5. ICRP, Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. 2007, Ann. ICRP 37 (2–4).
    6. Nakashima, E., K. Neriishi, and A. Minamoto, A Reanlysis of Atomic-bomb Cataract Data, 2000–2002: A Thereshold Analysis. Health Physics, 2006. 90(2): p. 154-160.
    7. Neriishi, K., et al., Postoperative cataract cases among atomic bomb survivors: radiation dose response and threshold. Radiat Res, 2007. 168(4): p. 404-8.
    8. Worgul, B.V., et al., Cataracts among Chernobyl clean-up workers: implications regarding permissible eye exposures. Radiat Res, 2007. 167(2): p. 233-43.
    9. IAEA, Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards. IAEA Safety Standards Series No. GSR Part 3. 2014, Vienna: IAEA.
    10. 行政院原子能委員會, 游離輻射防護法規彙編. 2012, 新北市: 行政院原子能委員會.
    11. 李海亮, 李福生, and 李全太, 介入放射学职业人员眼晶状体受照剂量研究进展. 中国辐射卫生, 2014. 1: p. 038.
    12. Charles, M.W. and N. Brown, Dimensions of the human eye relevant to radiation protection. Phys Med Biol, 1975. 20(2): p. 202-18.
    13. 王司宏, 愛眼 ∙ 護眼. 2001, 台北市: 台視文化.
    14. Harding, J.J. and M.J.C. Crabbe, The lens: development, proteins, metabolism and cataract., in The Eye Pt IB, H. Davson, Editor. 1984, Elsevier Science. p. 207-216.
    15. IAEA. Radiation and cataract : Staff protection. 2013; Available from: https://rpop.iaea.org/RPOP/RPoP/Content/InformationFor/HealthProfessionals/6_OtherClinicalSpecialities/radiation-cataract/Radiation-and_cataract.htm.
    16. 宮島弘子 與 陳瑩山、林大凱(編譯), 別讓視力老太快! 40 歲起必讀,白內障、青光眼、眼睛疲勞、視力降低的保健與治療 2015, 台北市: 旗標出版股份有限公司.
    17. Chylack, L.T., Jr., et al., The Lens Opacities Classification System III. The Longitudinal Study of Cataract Study Group. Arch Ophthalmol, 1993. 111(6): p. 831-6.
    18. Jacob, S., et al., Ionizing Radiation as a Risk Factor for Cataract: What about Low-Dose Effects? J Clinic Experiment Ophthalmol, 2012.
    19. Jacob, S., et al., Occupational cataracts and lens opacities in interventional cardiology (O'CLOC study): are X-Rays involved? BMC Public Health, 2010. 10: p. 537-537.
    20. Bitarafan Rajabi, A., et al., Ionizing Radiation-Induced Cataract in Interventional Cardiology Staff. Research in Cardiovascular Medicine, 2015. 4(1): p. e25148.
    21. Thrapsanioti, Z., et al., Eye Lens Radiation Exposure in Greek Interventional Cardiology Article. Radiat Prot Dosimetry, 2016.
    22. Merriam, G.R., Jr. and E.F. Focht, A clinical and experimental study of the effect of single and divided doses of radiation on cataract production. Trans Am Ophthalmol Soc, 1962. 60: p. 35-52.
    23. 鄭慶明, 實用影像診斷學. 2001, 臺北市: 俊傑書局股份有限公司.
    24. UNSCEAR, Sources and effects of ionising radiation. Volume 1: Sources, Annex D, Medical radiation exposures. 2000: New York: United Nations.
    25. Junk, A.K., Z. Haskal, and B.V. Worgul, Cataract in Interventional Radiology – an Occupational Hazard? Investigative Ophthalmology & Visual Science, 2004. 45(13): p. 388.
    26. Ciraj-Bjelac, O., et al., Risk for radiation-induced cataract for staff in interventional cardiology: is there reason for concern? Catheter Cardiovasc Interv, 2010. 76(6): p. 826-34.
    27. ICRU, Quantities and Units in Radiation Protection Dosimetry. ICRU Report 51. 1993. p. 7-8.
    28. 黄铭, et al., Li F (Mg, Cu, P) 热释光探测器储能长期稳定性研究. 中国辐射卫生, 2013. 4: p. 391-395.
    29. Geber, T., M. Gunnarsson, and S. Mattsson, Eye lens dosimetry for interventional procedures – Relation between the absorbed dose to the lens and dose at measurement positions. Radiation Measurements, 2011. 46(11): p. 1248-1251.
    30. Bilski, P., et al., The new EYE-D™ dosemeter for measurements of H P (3) for medical staff. Radiation Measurements, 2011. 46(11): p. 1239-1242.
    31. Viktor, S. and L. Charlotta. Evaluation of Eye Lens Doses Received by Medical Staff Working in Interventional Radiology at Sahlgrenska University Hospital. 2012; Available from:
    www.gu.se/digitalAssets/1360/1360091_viktor-sandblom-rapport.pdf.
    32. Farah, J., et al., A correlation study of eye lens dose and personal dose equivalent for interventional cardiologists. Radiation Protection Dosimetry, 2013. 157(4): p. 561-569.
    33. Koukorava, C., et al., Doses to operators during interventional radiology procedures: focus on eye lens and extremity dosimetry. Radiat Prot Dosimetry, 2011. 144(1-4): p. 482-6.
    34. O'Connor, U., et al., Occupational radiation dose to eyes from interventional radiology procedures in light of the new eye lens dose limit from the International Commission on Radiological Protection. The British Journal of Radiology, 2015. 88(1049): p. 20140627.
    35. Behrens, R. and G. Dietze, Dose conversion coefficients for photon exposure of the human eye lens. Physics in Medicine and Biology, 2011. 56(2): p. 415.
    36. Behrens, R., G. Dietze, and M. Zankl, Dose conversion coefficients for electron exposure of the human eye lens. Physics in Medicine and Biology, 2009. 54(13): p. 4069.
    37. Barnard, S.G.R., et al., Radiation protection of the eye lens in medical workers—basis and impact of the ICRP recommendations. The British Journal of Radiology, 2016. 89(1060): p. 20151034.
    38. Bos, A.J.J., High sensitivity thermoluminescence dosimetry. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2001. 184(1–2): p. 3-28.
    39. Da-Ke, W., S. Fu-Yin, and D. Hongchen, A High Sensitivity LiF Thermoluminescent Dosimeter-LiF(Mg, Cu, P). Health Physics, 1984. 46(5): p. 1063-1067.
    40. ThermoFisherScientific. TLD Materials Comparison Chart and TLD Materials Product Brochure. Available from:
    http://jrtassociates.com/pdfs/tld_comparison.pdf
    http://tools.thermofisher.com/content/sfs/brochures/Dosimetry-Materials-Brochure.pdf.
    41. ThermoElectronCorporation, Harshaw Standard TTP Recommendations - Technical Notice.(Publication No. DOSM-0-N-1202-001). 2002.
    42. Gilvin, P.J., et al., Type testing of a head band dosemeter for measuring eye lens dose in terms of Hp(3). Radiation Protection Dosimetry, 2013. 157(3): p. 430-436.
    43. AuroraBayCareMedicalCenter. Neurointervention and Conditions We Treat. 2017; Available from: https://www.aurorabaycare.com/medical-services/neuroscience/neurointervention-and-conditions-we-treat/neurointervention-and-conditions-we-treat.
    44. Rehn, E., Modeling of scatter radiation during interventional X-ray procedures. 2015, Department of Radiation Physics and Department of Medical and Health Sciences, Linköping University.
    45. Attix, F.H., Introduction to Radiological Physics and Radiation Dosimetry. 1986: John Wiley & Sons, Inc.
    46. Vanhavere, F., et al., Measurements of eye lens doses in interventional radiology and cardiology: Final results of the ORAMED project. Radiation Measurements, 2011. 46(11): p. 1243-1247.
    47. 吳東曄, 光刺激發光指環劑量計之劑量演算法研究, in 生醫工程與環境科學系. 2012, 國立清華大學: 新竹. p. 20.
    48. 許芳裕, 雙測量器技術在醫用直線加速器中子劑量評估之應用,國科會計畫編號:NSC94-2213-E-264-003. 2006.
    49. NIST. X-Ray Mass Attenuation Coefficients - Lithium Fluoride. 2004; Available from:
    http://physics.nist.gov/PhysRefData/XrayMassCoef/ComTab/lithiumflu.html.
    50. Liu, Y.-R., et al., Dose estimation of eye lens for interventional procedures in diagnosis. Radiation Physics and Chemistry.

    QR CODE