簡易檢索 / 詳目顯示

研究生: 陳鼎仁
Chen, Ding-Ren
論文名稱: 基於模擬之傳輸控制LT碼對於PoW區塊鏈 安全性及效能之影響與改善研究
The Security and Performance of Proof of Work Blockchains based on Simulated-Based LT Codes
指導教授: 王家祥
Wang, Jia-Shung
口試委員: 張錫嘉
Chang, Hsie-Chia
蕭旭峰
Hsiao, Hsu-Feng
學位類別: 碩士
Master
系所名稱:
論文出版年: 2018
畢業學年度: 107
語文別: 英文
論文頁數: 45
中文關鍵詞: 區塊鏈LT碼網路效能安全性規模化限制噴泉碼
外文關鍵詞: blockchain, LT Codes, Network Performance, Security, Scalability, fountain code
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 工作量證明的區塊鏈在安全性上已經在許多研究中被仔細分析,其規模化的能力限制也於社群及文獻中有所探討和延伸。然而,關於使用噴泉碼來控制/加速區塊傳輸的相關主題並未被廣泛討論,因此本研究旨在透過噴泉碼 (或 rateless codes) 來改善區塊鏈系統的網路傳輸能力,進而分析改善後之網路環境對於系統安全性及效能的影響。噴泉碼是一種可以適應於各種erasure rate環境的erasure codes,而LT碼是第一種可實際運用的噴泉碼,其擁有噴泉碼可無限編碼的特性,且編/解碼所需之運算皆為低複雜度。區塊鏈系統為一建構在網際網路上的點對點 (peer-to-peer, P2P) 網路架構,沒有階層、中央處理,本質上相當具有彈性、開放,節點可隨意加入,網路拓樸為隨機生成[18]。然而也因此特性,導致區塊鏈P2P網路的傳輸速度大受影響。在這篇研究中,我們建立一個區塊的傳輸模型,利用
    基於模擬的LT碼傳輸控制方法來提高傳輸的效能,並以該傳輸環境來分析區塊鏈系統的安全性以及規模化的能力和限制。實驗的結果顯示系統在以本篇設計的LT碼傳輸環境下擁有較佳的網路吞吐量、較少的冗餘度,並且帶來了更好的安全性以及規模化能力。


    The security provisions of the Proof of Work (PoW) blockchain system has been thoroughly analyzed in many researches, and the discussion and extension of the scalability limits of the system have also been found in some communities and literature. However, the research topic employing fountain codes to control/facilitate the transmission of blocks are not well discussed. Therefore, in this paper, the fountain codes (or rateless) are leveraged to improve the transmission ability of the blockchain system, and the impact on the security provisions and the performance of the system over the improved network environment are further analyzed. Fountain codes are a family of erasure codes where the rate can be adjusted on the fly. LT codes are the first realization of the fountain codes with the beneficial properties from it and having low computational complexity in both encoding/decoding as well. Blockchain system is structured as a peer-to-peer network architecture on top of the internet; the P2P means that there are no “special” nodes, no centralized service, and no hierarchy within the network. P2P networks are inherently resilient, open, and the computers are free to participate in the network which has its topology randomly constructed [18]. Due to the mentioned properties of the P2P network, the blockchain system encounters some transmission bottlenecks. We designed a block propagation model with the simulated-based LT codes transmission control mechanism which facilitates the transmission performance to analyze the security provisions and the limits of the scalability of the blockchain system. The results suggest that our proposed method performs a better network throughput, security provisions, scalability, and less redundancy.

    致謝 I 中文摘要 II ABSTRACT III CONTENTS V LIST OF FIGURES VII LIST OF TABLES VIII Chapter 1. Introduction 1 Chapter 2. Related Works 5 2.1 Fountain Codes 5 2.2 LT codes 6 2.3 Other feedback rateless codes 10 2.4 Blockchain Simulator 13 2.5 Double Spending 15 2.6 Stale Rate 16 2.7 Blockchain’s Performance 18 Chapter 3. Proposed Methods 20 3.1 Block Propagation Model 20 3.1.1 Design Concept 20 3.1.2 Simulated-based LT code Transmission Control Mechanism 23 3.2 Metrics Analysis 32 Chapter 4. Experimental Results 33 4.1 Performance evaluation 34 4.1.1 Block Propagation Model Results 34 4.1.2 Network Throughput 37 4.2 Results Discussion 39 4.2.1 Block Interval Limit 39 4.2.2 Block Size Limit 40 4.2.3 Performance with different latency 40 Chapter 5. Conclusion and Future Work 42 REFERENCES 44

    [1] C. Decker and R. Wattenhofer, “Information propagation in the bitcoin network,"IEEE International Conference on Peer-to-Peer Computing, Trento, Italy, 9-11 September, 2013, pp. 1-10.
    [2] Croman, Kyle, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, and Emin Gün,“On scaling decentralized blockchains,"In Proc. Int. Conf. Financial Cryptography Data Security, 2016, pp. 106–125.
    [3] Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S., “On the security and performance of proof of work blockchains,"In ACM CCS 2016, Vienna, Austria, 2016, pp. 3–16.
    [4] S. Nakamoto, “Bitcoin: a peer-to-peer electronic cash system,” 2009. [Online]. Available: http://www.bitcoin.org/bitcoin.pdf.
    [5] Michael Luby, “LT codes,” The 43rd Annual IEEE Symposium on Foundations of Computer Science, pp. 271–280, November 2002.
    [6] Pei-Chuan Tsai, Chih-Ming Chen, and Ying-ping Chen, “Sparse degrees analysis for LT Codes Optimization,” IEEE Congress on Evolutionary Computation (CEC), 10-15 June 2012.
    [7] Zao J.K., Hornansky M., and Pei-lun Diao, “Design of Optimal Short-Length LT Codes Using Evolution Strategies,” IEEE Congress on Evolutionary Computation (CEC), 10-15 June 2012.
    [8] E. A. Bodine and M. K. Cheng, “Characterization of Luby transform codes with small message size for low-latency decoding,” IEEE International Conference on Communications (ICC‘08), pp.1195-1199, 19-23 May 2008.
    [9] Beimel, S. Dolev and N. Singer, “RT oblivious erasure correcting,” IEEE/ACM Transactions on Networking, pp. 1321–1332, 2007.
    [10] Jesper H. Sørensen, Toshiaki Koike-Akino, and Philip Orlik, “Rateless Feedback Codes,” IEEE International Symposium on Information Theory (ISIT), 1-6 July 2012.
    [11] Ali Talari, and Nazanin Rahnavard, “On the Intermediate Symbol Recovery Rate of Rateless Codes,” IEEE Transactions on Communications, pp. 1237–1242, May 2012.
    [12] Ghassan O. Karame, Elli Androulaki, and Srdjan Capkun,“Double-spending fast payments in bitcoin,” In Proceedings of the 2012 ACM conference on Computer and communications security, CCS ’12, New York, NY, USA, 2012. ACM.
    [13] Mahesh Balakrishnan , Tudor Marian , Ken Birman , Hakim Weatherspoon , Einar Vollset, “Maelstrom: transparent error correction for lambda networks, ” Proceedings of the 5th USENIX Symposium on Networked Systems Design and Implementation, p.263-278, April 16-18, 2008, San Francisco, California.
    [14] Bitnodes, 'Bitnodes ip crawler'. [Online]. Available: https://github.com/ayeowch/bitnodes.
    [15] Alexandros G. Dimakis, Jiajun Wang and Kannan Ramchandran, “Growth Codes: Intermediate Performance and Unequal Error Protection for Video Streaming,” IEEE 9th Workshop on Multimedia Signal Processing, pp. 107-110, 1-3 Oct. 2007.
    [166] Ethereum, 'ethernodes'. [Online]. Available: https://www.ethernodes.org/network/1.
    [17] Ethereum, 'ethstats'. [Online]. Available: https://ethstats.net/.
    [18] Antonopoulos, Andreas M. Mastering, Bitcoin: Unlocking Digital Cryptocurrencies. O'Reilly Media, 2014, p. 171.

    QR CODE