簡易檢索 / 詳目顯示

研究生: 羅中佑
Lo, Chung-Yu
論文名稱: 多量子線接點的張量網絡模擬
Tensor network methods for quantum multi-wire junction simulations
指導教授: 陳柏中
Chen, Po-chung
口試委員: 高英哲
Kao, Ying-Jer
林瑜琤
Lin, Yu-Chen
張博堯
Chang, Po-Yao
黃靜瑜
Huang, Ching-Yu
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 106
中文關鍵詞: 量子多體系統一維樂廷格液體矩陣乘積態張量網絡
外文關鍵詞: Quantum many-body systems, 1-d Luttinger liquid, Matrix product states, Tensor networks
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究由存在交互作用的無自旋費米子所組成的多量子線接點的傳輸性質。結合密度矩陣重整化群以及無限邊界條件,我們開發一系列張量網絡方法,有效地模擬無限長量子線系統中鄰近接點的一段有限長範圍。在線性反應區間,系統的電導可藉由計算基態的電流—電流關聯函數,或在時間演化的模擬中直接測量求得。我們運用這些方法研究兩條與三條量子線的接點。關於由兩條相同量子線組成的接點,我們的數值結果不僅得到與理論預測相符的傳輸性質,更完整地求得關聯函數由短距離到長距離極限的跨度。此外我們發現在兩條異質量子線的接點,由基態關聯函數求得的電導與從動態模擬中測量到的不符。與理論比較後,我們認為電導與關聯函數的關係式需要進一步修正。針對三條量子線的Y接點,我們成功地模擬此前相關數值研究未曾達到的重整化群相態。本論文的數值結果可以為理論模型提供有效的驗證。


    We investigate the transport in quantum multi-wire junctions of interacting spinless fermions. Combining the density matrix renormalization group with infinite boundary conditions, we develop tensor network methods to effectively simulate in the vicinity of the junction a finite region of an infinite quantum wire system. The linear-response conductance is then obtained either from the static current-current correlation function of the ground state, or from the direct measurement of the real-time transport. We apply the methods to two- and three-wire junctions. Our results for two-identical-wire junctions not only show good agreement with the theoretical predictions, but also reveal the full crossover of correlation functions between the short- and long-distance regimes. We further discuss the inconsistency in the conductance of two-different-wire junctions calculated from the static and the dynamic methods. We conclude that the static method needs more scrutiny when the two wires are different. For three-wire Y-junctions, we simulate a wide range of fermion interactions, including the regions with no numerical study reported before. Our results serve as a test for candidate theories of this system.

    誌謝 iii 摘要 v Abstract vii Contents ix List of Abbreviations xi 1 Introduction 1 2 Methods 5 2.1 Tensor network notation . . . . . . . . . . . . . . . . . . . . 5 2.2 Matrix product representation . . . . . . . . . . . . . . . . . 7 2.2.1 Schmidt decomposition . . . . . . . . . . . . . . . . . . . . 7 2.2.2 Matrix product states . . . . . . . . . . . . . . . . . . . . 9 2.2.3 Matrix product operators . . . . . . . . . . . . . . . . . . 12 2.3 Quantum numbers . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 Good quantum numbers . . . . . . . . . . . . . . . . . . . . 15 2.3.2 Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4 Optimization methods . . . . . . . . . . . . . . . . . . . . . 19 2.4.1 Density matrix renormalization group . . . . . . . . . . . . 19 2.4.2 Time-evolving block decimation . . . . . . . . . . . . . . . 25 2.5 Infinite boundary conditions . . . . . . . . . . . . . . . . . 29 2.5.1 Hamiltonian MPO with infinite boundary conditions . . . . . . 29 2.5.2 TEBD with infinite boundary conditions . . . . . . . . . . . 33 3 Quantum impurity in a Tomonaga-Luttinger liquid 35 3.1 Publication: Crossover of correlation functions near a quantum impurity in a Tomonaga-Luttinger liquid . . . . . . . . . . . . . . 35 3.2 Correlation functions for the MPS representation of a TLL . . . 47 3.2.1 Validity of MPS representations for 1D critical systems . . . 47 3.2.2 Effectiveness of IBC for TLL impurity problems . . . . . . . 48 3.3 Numerical verification of the correlation function prefactors . 49 4 Transport in junctions of two interacting quantum wires 55 4.1 The conductance of TLL multi-wre junctions . . . . . . . . . . 55 4.2 Tensor network methods for two-wire junctions . . . . . . . . . 57 4.3 Numerical results of current-current correlators . . . . . . . 58 4.3.1 Single weak link . . . . . . . . . . . . . . . . . . . . . . 59 4.3.2 Resonant tunneling . . . . . . . . . . . . . . . . . . . . . 60 4.3.3 Wires with different Luttinger parameters . . . . . . . . . . 61 4.4 Small bias quench dynamics . . . . . . . . . . . . . . . . . . 64 5 Transport in Y-junctions 73 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.2 Tensor network methods for Y-junctions . . . . . . . . . . . . 75 5.3 Numerical results and discussions . . . . . . . . . . . . . . . 77 5.3.1 Non-interacting fermions g = 1 . . . . . . . . . . . . . . . 78 5.3.2 Repulsive interaction g < 1 . . . . . . . . . . . . . . . . . 80 5.3.3 Attractive interactions with 1 < g < 3 . . . . . . . . . . . 80 5.3.4 Attractive interactions with g >= 3 . . . . . . . . . . . . . 86 6 Summary and outlook 95 Appendix A Symmetric tensors for creation & annihilation operators 97 Appendix B Hamiltonian MPO for a TLL Y-junction 99 Bibliography 103

    [1] G. E. Moore, “Cramming more components onto integrated circuits,” Proceedings of the IEEE 86, 82–85 (1998).
    [2] S. Tomonaga, “Remarks on bloch’s method of sound waves applied to many-fermion problems,” Progress of Theoretical Physics 5, 544–569 (1950).
    [3] J. M. Luttinger, “An exactly soluble model of a many-fermion system,” Journal of Mathematical Physics 4, 1154–1162 (1963).
    [4] T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, Oxford, 2004).
    [5] Z. Yao, H. W. C. Postma, L. Balents, and C. Dekker, “Carbon nanotube intramolecular junctions,” Nature 402, 273 (1999).
    [6] H. W. C. Postma, M. de Jonge, Z. Yao, and C. Dekker, “Electrical transport through carbon nanotube junctions created by mechanical manipulation,” Phys. Rev. B 62, R10653–R10656 (2000).
    [7] C. L. Kane and M. P. A. Fisher, “Transport in a one-channel Luttinger liquid,” Phys. Rev. Lett. 68, 1220–1223 (1992).
    [8] C. L. Kane and M. P. A. Fisher, “Transmission through barriers and resonant tunnel-ing in an interacting one-dimensional electron gas,” Phys. Rev. B 46, 15233–15262 (1992).
    [9] A. Furusaki and N. Nagaosa, “Single-barrier problem and Anderson localization in a one-dimensional interacting electron system,” Phys. Rev. B 47, 4631 (1993).
    [10] I. Safi and H. J. Schulz, “Transport in an inhomogeneous interacting one-dimensional system,” Phys. Rev. B 52, R17040–R17043 (1995).
    [11] A. Furusaki and N. Nagaosa, “Tunneling through a barrier in a Tomonaga-Luttinger liquid connected to reservoirs,” Phys. Rev. B 54, R5239–R5242 (1996).
    [12] C. Papadopoulos, A. Rakitin, J. Li, A. S. Vedeneev, and J. M. Xu, “Electronic transport in y-junction carbon nanotubes,” Phys. Rev. Lett. 85, 3476–3479 (2000).
    [13] F. Deepak, N. S. John, A. Govindaraj, G. Kulkarni, and C. Rao, “Nature and electronic properties of y-junctions in CNTs and n-doped CNTs obtained by the pyrolysis of organometallic precursors,” Chemical Physics Letters 411, 468 – 473 (2005).
    [14] P. R. Bandaru, C. Daraio, S. Jin, and A. M. Rao, “Novel electrical switching behaviour and logic in carbon nanotube y-junctions,” Nature Materials 4, 663–666 (2005).
    [15] R. Orús, “A practical introduction to tensor networks: Matrix product states and projected entangled pair states,” Annals of Physics 349, 117 – 158 (2014).
    [16] R. Orús, “Advances on Tensor Network Theory: Symmetries, Fermions, Entanglement, and Holography,” Eur. Phys. J. B87, 280 (2014), arXiv:1407.6552 [cond-mat.str-el] .
    [17] Y.-L. Lo, Y.-D. Hsieh, C.-Y. Hou, P. Chen, and Y.-J. Kao, “Quantum impurity in a Luttinger liquid: Universal conductance with entanglement renormalization,” Phys. Rev. B 90, 235124 (2014).
    [18] A. Rahmani, C.-Y. Hou, A. E. Feiguin, C. Chamon, and I. K. Affleck, “How to Find Conductance Tensors of Quantum Multiwire Junctions through Static Calculations: Application to an Interacting Y Junction,” Phys. Rev. Lett. 105, 226803 (2010).
    [19] A. Rahmani, C.-Y. Hou, A. E. Feiguin, M. Oshikawa, C. Chamon, and I. K. Affleck, “General method for calculating the universal conductance of strongly correlated junctions of multiple quantum wires,” Phys. Rev. B 85, 045120 (2012).
    [20] C.-Y. Hou, A. Rahmani, A. E. Feiguin, and C. Chamon, “Junctions of multiple quantum wires with different Luttinger parameters,” Phys. Rev. B 86, 075451 (2012).
    [21] M. A. Cazalilla and J. B. Marston, “Time-dependent density-matrix renormalization group: A systematic method for the study of quantum many-body out-of-equilibrium systems,” Phys. Rev. Lett. 88, 256403 (2002).
    [22] K. A. Al-Hassanieh, A. E. Feiguin, J. A. Riera, C. A. Büsser, and E. Dagotto, “Adaptive time-dependent density-matrix renormalization-group technique for calculating the conductance of strongly correlated nanostructures,” Phys. Rev. B 73, 195304 (2006).
    [23] H. N. Phien, G. Vidal, and I. P. McCulloch, “Infinite boundary conditions for matrix product state calculations,” Phys. Rev. B 86, 245107 (2012).
    [24] H. N. Phien, G. Vidal, and I. P. McCulloch, “Dynamical windows for real-time evolution with matrix product states,” Phys. Rev. B 88, 035103 (2013).
    [25] V. Zauner-Stauber, M. Ganahl, H. G. Evertz, and T. Nishino, “Time evolution within a comoving window: scaling of signal fronts and magnetization plateaus after a local quench in quantum spin chains,” J. Phys.: Condens. Matter 27, 425602 (2015).
    [26] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th ed. (Cambridge University Press, New York, 2011).
    [27] B. Zeng, X. Chen, D.-L. Zhou, and X.-G. Wen, Quantum Information Meets Quantum Matter: From Quantum Entanglement to Topological Phases of Many-Body Systems, 1st ed. (Springer-Verlag, New York, 2019).
    [28] G. Vidal, “Efficient classical simulation of slightly entangled quantum computations,” Phys. Rev. Lett. 91, 147902 (2003).
    [29] F. Verstraete and J. I. Cirac, “Matrix product states represent ground states faithfully,” Phys. Rev. B 73, 094423 (2006).
    [30] D. Pérez-García, F. Verstraete, M. M. Wolf, and J. I. Cirac, “Matrix product state representations,” Quantum Information & Computation 7, 401–430 (2007).
    [31] U. Schollwoeck, “The density-matrix renormalization group in the age of matrix product states,” Annals of Physics 326, 96–192 (2011).
    [32] I. P. McCulloch, “From density-matrix renormalization group to matrix product states,” J. Stat. Mech. 2007, P10014–P10014 (2007).
    [33] G. M. Crosswhite and D. Bacon, “Finite automata for caching in matrix product algorithms,” Phys. Rev. A 78, 012356 (2008).
    [34] L. Michel and I. P. McCulloch, “Schur Forms of Matrix Product Operators in the Infinite Limit,” (2010), arxiv:1008.4667 .
    [35] S. Singh, R. N. C. Pfeifer, and G. Vidal, “Tensor network decompositions in the presence of a global symmetry,” Phys. Rev. A 82, 050301 (2010).
    [36] Y.-J. Kao, Y.-D. Hsieh, and P. Chen, “Uni10: an open-source library for tensor network algorithms,” Journal of Physics: Conference Series 640, 012040 (2015).
    [37] P. Corboz, R. Orús, B. Bauer, and G. Vidal, “Simulation of strongly correlated fermions in two spatial dimensions with fermionic projected entangled-pair states,” Phys. Rev. B 81, 165104 (2010).
    [38] S. R. White, “Density matrix formulation for quantum renormalization groups,” 69, 2863–2866 (1992).
    [39] C. Lanczos, “An iteration method for the solution of the eigenvalue problem of linear differential and integral operators,” J. Res. Natl. Bur. Stand. B 45, 255–282 (1950).
    [40] I. P. McCulloch, “Infinite size density matrix renormalization group, revisited,” (2008), 0804.2509v1 .
    [41] J. A. Kjäll, M. P. Zaletel, R. S. K. Mong, J. H. Bardarson, and F. Pollmann, “Phase diagram of the anisotropic spin-2 XXZ model: Infinite-system density matrix renormalization group study,” 87, 235106 (2013).
    [42] R. Orús and G. Vidal, “Infinite time-evolving block decimation algorithm beyond unitary evolution,” 78, 155117 (2008).
    [43] G. Vidal, “Efficient simulation of one-dimensional quantum many-body systems,” Phys. Rev. Lett. 93, 040502 (2004).
    [44] N. Hatano and M. Suzuki, “Finding exponential product formulas of higher orders,” in Quantum Annealing and Other Optimization Methods, edited by A. Das and B. K. Chakrabarti (Springer Berlin Heidelberg, Berlin, Heidelberg, 2005) pp. 37–68.
    [45] Y. Saad and M. H. Schultz, “Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput. 7, 856–869 (1986).
    [46] T. Hikihara and A. Furusaki, “Correlation amplitudes for the spin- 12 XXZ chain in a magnetic field,” Phys. Rev. B 69, 064427 (2004).
    [47] A. Furusaki and N. Nagaosa, “Resonant tunneling in a luttinger liquid,” Phys. Rev. B 47, 3827–3831 (1993).
    [48] G. Grüner, Density waves in solids (Addison-Wesley, New York, 1994).
    [49] N. S. Wingreen, A.-P. Jauho, and Y. Meir, “Time-dependent transport through a mesoscopic structure,” Phys. Rev. B 48, 8487–8490 (1993).
    [50] M. Oshikawa, C. Chamon, and I. Affleck, “Junctions of three quantum wires,” JSTAT 2006, P02008 (2006).
    [51] D. N. Aristov and P. Wölfle, “Chiral y junction of luttinger liquid wires at strong coupling: Fermionic representation,” Phys. Rev. B 88, 075131 (2013).
    [52] H. Guo and S. R. White, “Density matrix renormalization group algorithms for y-junctions,” Phys. Rev. B 74, 060401 (2006).
    [53] M. Kumar, A. Parvej, S. Thomas, S. Ramasesha, and Z. G. Soos, “Efficient density matrix renormalization group algorithm to study y junctions with integer and half-integer spin,” Phys. Rev. B 93, 075107 (2016).
    [54] Z. Shi and I. Affleck, “Fermionic approach to junctions of multiple quantum wires attached to Tomonaga-Luttinger liquid leads,” Physical Review B 94, 035106 (2016).
    [55] X. Barnabé-Thériault, A. Sedeki, V. Meden, and K. Schönhammer, “Junction of three quantum wires: Restoring time-reversal symmetry by interaction,” Phys. Rev. Lett. 94, 136405 (2005).
    [56] C. Nayak, M. P. A. Fisher, A. W. W. Ludwig, and H. H. Lin, “Resonant multilead point-contact tunneling,” Phys. Rev. B 59, 15694 (1999).

    QR CODE