簡易檢索 / 詳目顯示

研究生: 董容羽
Tung, Jung-Yu
論文名稱: (一)米根黴糖澱粉酶澱粉結合區域的晶體結構與多醣結合路徑之研究; (二)致病性鉤端螺絲體之脂蛋白LipL32與鈣離子及纖維連接蛋白的結合能力之研究
Crystal Structures of Starch Binding Domain of Rhizopus oryzae Glucoamylase Reveal a Polysaccharide Binding Path; Calcium Binds to LipL32, a Lipoprotein from Pathogenic Leptospira, and Modulates Fibronectin Binding
指導教授: 孫玉珠
Sun, Yuh-Ju
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 94
中文關鍵詞: 米麴菌澱粉酶碳水化合物結合模組環形糊精麥芽七糖澱粉酶聚乙二醇根均方偏差米根黴澱粉結合區塊外膜蛋白細胞外間質磷酸鹽緩衝液多波長異常散射法恆溫滴定微量熱儀丙磺酸酵素免疫分析法多重天門冬氨酸
外文關鍵詞: AnGA, CBM, βCD, G7, GA, PEG, RMSD, Ro, SBD, OMP, ECM, PBS, MAD, ITC, MOPS, ELISA, polyD
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 葡萄糖澱粉酶(glucoamylase)水解澱粉和多醣變成葡萄糖。米根黴糖澱粉酶(Rhizopus oryzae GA)由兩個功能區段組成,胺端澱粉結合結構區段(starch-binding domain SBD)和羧端催化結構區段(catalytic domain),這兩個區段以O型配醣體連結區域連接。RoGA屬於醣類結合模組(carbohydrate-binding modules, CBM)中的第21族(RoGACBM21)。在本研究中,決定米根黴糖澱粉酶澱粉結合區段以及與複合物β-環形糊精(β-CD)及麥芽七糖(maltoheptaose) 的晶體結構。有兩個受體結合位置,結合位置I(色胺酸47)和結合位置II(酪胺酸32),而從我們的研究發現這兩個糖類結合位置是相互作用的。除了疏水性的作用力外,兩段獨特的多天門冬胺酸區域(polyN)包含了連續的天門冬胺酸參與糖結合。酪胺酸32在有受體結合的情況下產生結構變化。為了闡明與多醣結合的作用機制,根據複合物的晶體結構,製造突變的蛋白且分析其與糖類的結合親和力。除了兩個受體結合位置外,長鏈多醣可能會通過酪胺酸67和酪胺酸93,因此提出可能的多醣結合路徑。
    Glucoamylase hydrolyzes starch and polysaccharides to β-D-glucose. Rhizopus oryzae glucoamylase (RoGA) consists of two functional domains, an N-terminal starch binding domain (SBD) and a C-terminal catalytic domain, which are connected by an O-glycosylated linker. The SBD of RoGA belongs to the carbohydrate binding modules (CBMs) family 21 (RoGACBM21). The crystal structures of SBD and the complexes with β-cyclodextrin, a cyclic carbohydrate, and maltoheptaose, a linear carbohydrate, were determined. Two carbohydrate binding sites, I (Trp47) and II (Tyr32), were resolved and their binding are cooperative. Besides the hydrophobic interaction, two unique polyN loops comprising consecutive asparagines also participate in the sugar binding. A major conformational change in Tyr32 was observed between unliganded and liganded SBDs. To elucidate the mechanism of polysaccharide binding, a number of mutants were constructed and characterized by quantitative binding isotherm and Scatchard analysis. In addition to sites I and II, a continuous ligand binding surface through Tyr67 and Tyr93 might be essential for long-chain polysaccharides, hence a binding path for RoGA was proposed.


    腎小管間質炎(Tubulointerstitial nephritis)是鉤端螺旋體病(leptospirasis)的主要腎臟表現。LipL32位於致病性鉤端螺旋體的外膜上,是一個重要的致病因子以及主要的脂蛋白。它藉由辨認和附著宿主細胞的細胞外間質成分來迴避免疫反應。我們解出與鈣離子結合的LipL32的晶體結構而且其解析度達 2.3埃。LipL32有一個獨特的polyD序列,由七個天冬胺酸殘基序列所構成,在LipL32結構的表面上形成了一個連續酸性的區域而能與鈣離子結合。鈣離子與LipL32結合產生重要的構形變化。利用等溫滴定量熱儀(Isothermal Titration Calorimeter)偵測出鈣離子與LipL32的結合親和力。利用圓二色光譜儀(Circular Dichroism)以及酵素免疫分析法(ELISA)測出纖維連接蛋白與LipL32的結合力。LipL32與纖維連接蛋白之間的相互作用可能與鈣離子結合有關。根據鈣離子結合的LipL32晶體結構以及功能實驗分析,纖維連接蛋白可能的結合區靠近polyD序列。因此鈣離子可能是鉤端螺旋體和宿主細胞的細胞外間質之相互作用的一個重要因子。
    Tubulointerstitial nephritis is a cardinal renal manifestation of leptospirosis. LipL32, a major lipoprotein and a virulence factor, locates on the outer membrane of the pathogen Leptospira. It evades immune response by recognizing and adhering to extracellular matrix components of the host cell. The crystal structure of the Ca2+-bound LipL32 was determined at 2.3 A resolution. LipL32 has a novel polyD sequence of seven aspartate residues that forms a continuous acidic surface patch for Ca2+ binding. A significant conformational change was observed for the Ca2+ bound form of LipL32. The calcium binding to LipL32 was determined by ITC. The binding of fibronectin to LipL32 was observed by Stains-all circular dichroism and ELISA experiments. The interaction between LipL32 and fibronectin might be associated with Ca2+ binding. Based on the crystal structure of the Ca2+-bound LipL32 and the Stains-all results, fibronectin probably binds near to the polyD region on LipL32. The Ca2+ binding to LipL32 might be important for Leptospira to interact with the extracellular matrix interaction of the host cell.

    Contents Chinese abstract i English abstract iii Contents v List of Tables vii List of Figures viii List of Abbreviations x Part I Crystal Structures of Starch Binding Domain of Rhizopus oryzae Glucoamylase Reveal a Polysaccharide Binding Path Chapter 1 Introduction 1 Chapter 2 Materials and Methods 1.2.1 Protein Expression and Purification 4 1.2.2 Crystallization 4 1.2.3 X-ray Data Collection 5 1.2.4 Structure Determination and Refinement 5 Chapter 3 Results and Discussion 1.3.1 Carbohydrate Binding Module Folding Topology 6 1.3.2 Crystallization 6 1.3.3 X-ray Data Collection and Structure Determination 7 1.3.4 Overall Structures 7 1.3.5 Binding Sites 8 1.3.6 PolyN Loop 10 1.3.7 Binding Affinity for Starch and βCD 11 1.3.8 RoGACBM21 Complexes and Other CBM Superfamilies 13 1.3.9 Liganded and Unliganded RoGACBM21 15 1.3.10 RoGACBM21 Complexes and Other CBM Superfamilies 16 Chapter 4 Conclusion 19 Chapter 5 Tables and Figures 20 Part II Calcium Binds to LipL32, a Lipoprotein from Pathogenic Leptospira, and Modulates Fibronectin Binding Chapter 1 Introduction 37 Chapter 2 Materials and Methods 2.2.1 Protein Expression and Purification 41 2.2.2 Mass Spectrometry and ICP-AES 42 2.2.3 Size Exclusion Chromatography 42 2.2.4 Analytical Ultracentrifugation 43 2.2.5 Crystallization and X-ray Data Collection 43 2.2.6 Phase Determination, Structural Determination and Refinement 43 2.2.7 Isothermal Titration Calorimetry (ITC) 44 2.2.8 The Strains-all Binding Assay 44 2.2.9 Enzyme-linked immunosorbent ssay (ELISA) 45 2.2.10 Molecular Docking 46 Chapter 3 Results and Discussion 2.3.1 LipL32 Characterization 48 2.3.2 Crystallization 49 2.3.3 MAD Data Collection, Phase Determination and Structure Refinement 49 2.3.4 LipL32 Structure 51 2.3.5 LipL32 is a Ca2+-Binding Protein 52 2.3.6 Conformational changes triggered by Ca2+ binding 53 2.3.7 Ca2+ modulates fibronectin binding to LipL32 56 Chapter 4 Conclusion 59 Chapter 5 Tables and Figures 60 References 86 List of Tables Part I Crystal Structures of Starch Binding Domain of Rhizopus oryzae Glucoamylase Reveal a Polysaccharide Binding Path 1.1 X-ray diffraction data and refinement statistics of apo SBD and the complex of SBD-βCD and SBD-G7 20 1.2 Binding affinity of wild-type and mutant RoGACBM21 for starch and βCD 21 Part II Calcium Binds to LipL32, a Lipoprotein from Pathogenic Leptospira, and Modulates Fibronectin Binding 2.1 List of 21 selenium sites found in 5 mol/asu by SOLVE 60 2.2 X-ray diffraction data and Structure Refinement Statistics 61 2.3 Similar three-dimensional structure search of LipL32 by DALI 62 2.4 ICP-AES data of the LipL32 63 List of Figures Part I Crystal Structures of Starch Binding Domain of Rhizopus oryzae Glucoamylase Reveal a Polysaccharide Binding Path Figure 1.1 Structure-based multiple sequence alignment of SBDs 22 Figure 1.2 Crystals and X-ray diffraction pattern of the RoGACBM21-βCD complex 23 Figure 1.3 Crystals and X-ray diffraction pattern of the RoGACBM21-G7 complex 24 Figure 1.4 Overall structures of the RoGACBM21 complexes 25 Figure 1.5 2|Fo|−|Fc| omit electron density map of βCD in the SBD–βCD complex 26 Figure 1.6 Superimposition of four maltoheptaoses of four molecules per asymmetric unit in the RoGACBM21–G7 complex 27 Figure 1.7 Two polyN loops in the SBD–βCD complex 28 Figure 1.8 Two polyN loops of loop β34 and loop β78 in the SBD–βCD complex 29 Figure 1.9 Continuous polysaccharide-binding path in the SBD–βCD complex 30 Figure 1.10 The solvent-accessible surface of the SBD–βCD complex 31 Figure 1.11 Structural superimposition of unliganded and liganded RoGACBM21s 32 Figure 1.12 Structural comparison of RoGACBM21 with other CBM superfamilies are presented in stereo view 33 Figure 1.13 Structural superimposition of RoGACBM21 (PDB code: 2V8L, green) and AnGACBM20 (PDB code: 1AC0, pink) complexes with βCD are presented in stereo view 34 Figure 1.14 Structural superimposition of RoGACBM21 (PDB code: 2V8L, green) and TvAICBM34 (PDB code: 1UH4, blue) complexes are presented in stereo view 35 Figure 1.15 The molecular packing in the SBD-βCD complex 36 Part II Calcium Binds to LipL32, a Lipoprotein from Pathogenic Leptospira, and Modulates Fibronectin Binding Figure 2.1 Cell wall of Leptospires and differential induction of early inflammatory 64 Figure 2.2 Bacterial Lipoprotein Biosynthesis 65 Figure 2.3 Sequence and secondary structure of LipL32 66 Figure 2.4 Mass Spectrometry 67 Figure 2.5 Size exclusion chromatography and sedimentation velocity analytical ultracentrifugation of LipL32 68 Figure 2.6 Sedimentation velocity analytical ultracentrifugation of LipL32 69 Figure 2.7 Selenomethionine-derivative LipL32 and Crystal morphology 70 Figure 2.8 Heavy atoms search by SHELX 71 Figure 2.9 Phasing and density modification by SHELX 72 Figure 2.10 Density modification and auto-model building by RESOLVE 73 Figure 2.11 Ramachandran plot of SeLipL32 crystal structure 74 Figure 2.12 Ca2+-bound LipL32 75 Figure 2.13 Ca2+-binding site of LipL32 76 Figure 2.14 Calcium binding affinity for LipL32 determined by ITC 77 Figure 2.15 Ca2+ bind to LipL32 was detected by the Circular Dichroism spectra of stains-all signal 78 Figure 2.16 Structural comparison between Ca2+-bound and Ca2+-free LipL32 79 Figure 2.17 Major conformational change around loop β8β9 between Ca2+-bound and Ca2+-free LipL32 80 Figure 2.18 Possible collagen-binding sites on LipL32 81 Figure 2.19 Interaction between the fibronectin fragment F30 and LipL32 82 Figure 2.20 ELISA of the interaction between F30 and Ca2+-bound or Ca2+-free LipL32 83 Figure 2.21 Model of the LipL32-F30 complex 84 Figure 2.22 Possible hydrogen bonds of the LipL32-F30 complex 85 Figure 2.23 Electrostatic surface potentials of the LipL32-F30 complex 86

    1. Buleon, A., et al., Starch granules: structure and biosynthesis. Int. J. Biol. Macromol., 1998. 23: p. 85-112.
    2. Hoover, R., Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr. Polymers, 2001. 45: p. 253-276.
    3. Parker, R. and S.G. Ring, Aspects of the physical chemistry of starch. J. Cereal Sci., 2001. 34: p. 1-17.
    4. Gessler, K., et al., V-Amylose at atomic resolution: X-ray structure of a cycloamylose with 26 glucose residues (cyclomaltohexaicosaose). Proc. Natl. Acad. Sci. USA, 1999. 96: p. 4246-4251.
    5. Smith, A.M., K. Denyer, and C.R. Martin, What controls the amount and structure of starch in storage organs? Plant Physiol., 1995. 107: p. 673-677.
    6. Imberty, A., et al., The double-helical nature of the crystalline part of A-starch. J. Mol. Biol., 1988. 201(2): p. 365-78.
    7. Coutinho, P.M. and P.J. Reilly, Glucoamylase structural, functional, and evolutionary relationships. Proteins, 1997. 29: p. 334-347.
    8. Sauer, J., et al., Glucoamylase: structure/function relationships, and protein engineering. Biochim. Biophys. Acta, 2000. 1543: p. 275-293.
    9. Henrissat, B., A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J., 1991. 280: p. 309-316.
    10. Lin, S.C., et al., Role of the linker region in the expression of Rhizopus oryzae glucoamylase. BMC Biochem., 2007. 8: p. 9.
    11. Coutinho, P.M. and B. Henrissat, The modular structure of cellulases and other carbohydrate-active enzymes: an integrated database approach. 1999, Tokyo: In Genetics, Biochemistry and Ecology of Cellulose Degradation (Ohmiya, K., Hayashi, K., Sakka, K., Kobayashi, Y., Karita, S., and Kimura, T., eds), pp. 15-23, Uni Publishers Co. 15-23.
    12. Hall, J., et al., The non-catalytic cellulose-binding domain of a novel cellulase from Pseudomonas fluorescens subsp. cellulosa is important for the efficient hydrolysis of Avicel. Biochem. J., 1995. 309: p. 749-756.
    13. Machovic, M. and S. Janecek, Starch-binding domains in the post-genome era. Cell Mol. Life Sci., 2006. 63: p. 2710-2724.
    14. Giardina, T., et al., Both binding sites of the starch-binding domain of Aspergillus niger glucoamylase are essential for inducing a conformational change in amylose. J. Mol. Biol., 2001. 313: p. 1149-1159.
    15. Chou, W.I., et al., The family 21 carbohydrate-binding module of glucoamylase from Rhizopus oryzae consists of two sites playing distinct roles in ligand binding. Biochem. J., 2006. 396: p. 469-477.
    16. Liu, Y.N., et al., Solution structure of family 21 carbohydrate-binding module from Rhizopus oryzae glucoamylase. Biochem. J., 2007. 403: p. 21-30.
    17. Machovic, M., et al., A new clan of CBM families based on bioinformatics of starch-binding domains from families CBM20 and CBM21. FEBS J., 2005. 272: p. 5497-5513.
    18. Southall, S.M., et al., The starch binding domain from glucoamylase disrupts the structure of starch. FEBS Lett, 1999. 447: p. 58-60.
    19. Bolam, D.N., et al., Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. Biochem. J., 1998. 331: p. 775-781.
    20. Boraston, A.B., et al., Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. J., 2004. 382: p. 769-781.
    21. Belshaw, N.J. and G. Williamson, Production and purification of a granular starch binding domain of glucoamylase 1 from Aspergillus niger. FEBS Lett, 1990. 269: p. 350-353.
    22. Paldi, T., I. Levy, and O. Shoseyov, Glucoamylase starch-binding domain of Aspergillus niger B1: molecular cloning and functional characterization. Biochem. J., 2003. 372: p. 905-910.
    23. Sorimachi, K., et al., Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to β-cyclodextrin. Structure, 1997. 5: p. 647-661.
    24. Boraston, A.B., et al., A structural and functional analysis of α-glucan recognition by family 25 and 26 carbohydrate-binding modules reveals a conserved mode of starch recognition. J. Biol. Chem., 2006. 281: p. 587-598.
    25. Abe, A., et al., Complex structures of Thermoactinomyces vulgaris R-47 α-amylase 1 with malto-oligosaccharides demonstrate the role of domain N acting as a starch-binding domain. J. Mol. Biol., 2004. 335: p. 811-822.
    26. Mikami, B., et al., Crystal Structure of Pullulanase: Evidence for Parallel Binding of Oligosaccharides in the Active Site. J. Mol. Biol., 2006. 359: p. 690-707.
    27. Polekhina, G., et al., Structural basis for glycogen recognition by AMP-activated protein kinase. Structure, 2005. 13(10): p. 1453-1462.
    28. Otwinowski, Z. and W. Minor, Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol., 1997. 276: p. 307-326.
    29. Vagin, A. and A. Teplyakov, MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr., 1997. 30: p. 1022-1025.
    30. McRee, D.E., XtalView/Xfit: a versatile program for manipulating atomic coordinate and electron density. J. Struct. Biol., 1999. 125: p. 156-165.
    31. Brunger, A.T., et al., Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr, 1998. 54: p. 905-921.
    32. Collaborative, The CCP4 suite: programs for protein crystallography. Acta Crystallographica Section D, 1994. 50(5): p. 760-763.
    33. Kamitori, S., et al., Crystal structure of Thermoactinomyces vulgaris R-47 alpha-amylase II (TVAII) hydrolyzing cyclodextrins and pullulan at 2.6 A resolution. J. Mol. Biol., 1999. 287: p. 907-921.
    34. Knegtel, R.M., et al., Crystal structure at 2.3 A resolution and revised nucleotide sequence of the thermostable cyclodextrin glycosyltransferase from Thermoanaerobacterium thermosulfurigenes EM1. J. Mol. Biol., 1996. 256: p. 611-622.
    35. Mikami, B., et al., Structure of raw starch-digesting Bacillus cereus β-amylase complexed with maltose. Biochemistry, 1999. 38: p. 7050-7061.
    36. Oyama, T., et al., Crystal structure of β-amylase from Bacillus cereus var. mycoides at 2.2 A resolution. J. Biochem. (Tokyo), 1999. 125: p. 1120-1130.
    37. Sorimachi, K., et al., Solution structure of the granular starch binding domain of glucoamylase from Aspergillus niger by nuclear magnetic resonance spectroscopy. J. Mol. Biol., 1996. 259: p. 970-987.
    38. Lawson, C.L., et al., Nucleotide sequence and X-ray structure of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 in a maltose-dependent crystal form. J. Mol. Biol., 1994. 236: p. 590-600.
    39. Feese, M.D., et al., Crystal structure of glycosyltrehalose trehalohydrolase from the hyperthermophilic archaeum Sulfolobus solfataricus. J. Mol. Biol., 2000. 301: p. 451-464.
    40. Matthews, B.W., Solvent content of protein crystals. J. Mol. Biol., 1968. 33: p. 491-497.
    41. Penninga, D., et al., The raw starch binding domain of cyclodextrin glycosyltransferase from Bacillus circulans strain 251. J Biol Chem, 1996. 271(51): p. 32777-84.
    42. Schmidt, A.K., et al., Structure of cyclodextrin glycosyltransferase complexed with a derivative of its main product β-cyclodextrin. Biochemistry, 1998. 37: p. 5909-5915.
    43. Rodriguez-Sanoja, R., N. Oviedo, and S. Sanchez, Microbial starch-binding domain. Curr. Opin. Microbiol., 2005. 8: p. 260-267.
    44. Farr, R.W., Leptospirosis. Clin. Infect. Dis., 1995. 21(1): p. 1-6.
    45. Biegel, E. and H. Mortensen, [Leptospirosis]. Ugeskr Laeger, 1995. 157(2): p. 153-157.
    46. Bharti, A.R., et al., Leptospirosis: a zoonotic disease of global importance. Lancet Infect. Dis., 2003. 3(12): p. 757-771.
    47. Yang, C.W., Leptospirosis renal disease: Understanding the initiation by Toll-like receptors. Kidney Int., 2007. 72(8): p. 918-925.
    48. Dolhnikoff, M., et al., Pathology and pathophysiology of pulmonary manifestations in leptospirosis. Braz. J. Infect. Dis., 2007. 11(1): p. 142-148.
    49. Yang, C.W., M.S. Wu, and M.J. Pan, Leptospirosis renal disease. Nephrol. Dial. Transplant., 2001. 16 Suppl 5: p. 73-77.
    50. Haake, D.A., et al., The Leptospiral Major Outer Membrane Protein LipL32 Is a Lipoprotein Expressed during Mammalian Infection. Infect. Immun., 2000. 68(4): p. 2276-2285.
    51. Cullen, P.A., D.A. Haake, and B. Adler, Outer membrane proteins of pathogenic spirochetes. FEMS Microbiol Rev, 2004. 28(3): p. 291-318.
    52. Barnett, J.K., et al., Expression and distribution of leptospiral outer membrane components during renal infection of hamsters. Infect. Immun., 1999. 67(2): p. 853-861.
    53. Achouak, W., T. Heulin, and J.M. Pages, Multiple facets of bacterial porins. FEMS Microbiol Lett, 2001. 199(1): p. 1-7.
    54. Vieira, M.L., et al., In Vitro Identification of Novel Plasminogen-Binding Receptors of the Pathogen Leptospira interrogans. PloS one, 2010. 5(6): p. e11259.
    55. Yang, C.W., et al., Leptospira Outer Membrane Protein Activates NF-kB and Downstream Genes Expressed in Medullary Thick Ascending Limb Cells. J. Am. Soc. Nephrol., 2000. 11(11): p. 2017-2026.
    56. Yang, C.W., et al., The Leptospira Outer Membrane Protein LipL32 Induces Tubulointerstitial Nephritis-Mediated Gene Expression in Mouse Proximal Tubule Cells. J. Am. Soc. Nephrol., 2002. 13(8): p. 2037-2045.
    57. Yang, C.W., et al., Toll-like receptor 2 mediates early inflammation by leptospiral outer membrane proteins in proximal tubule cells. Kidney Int., 2006. 69(5): p. 815-822.
    58. Patti, J.M., et al., MSCRAMM-mediated adherence of microorganisms to host tissues. Annu. Rev. Microbiol., 1994. 48: p. 585-617.
    59. Choy, H.A., et al., Physiological Osmotic Induction of Leptospira interrogans Adhesion: LigA and LigB Bind Extracellular Matrix Proteins and Fibrinogen. Infect. Immun., 2007. 75(5): p. 2441-2450.
    60. Stevenson, B., et al., Leptospira interrogans Endostatin-Like Outer Membrane Proteins Bind Host Fibronectin, Laminin and Regulators of Complement. PLoS ONE, 2007. 2(11): p. e1188.
    61. Inouye, S., et al., Amino acid sequence for the peptide extension on the prolipoprotein of the Escherichia coli outer membrane. Proc Natl Acad Sci U S A, 1977. 74(3): p. 1004-8.
    62. Sankaran, K. and H.C. Wu, Bacterial lipoproteins, in Lipid Modifications of Proteins, M.J. Schlesinger, Editor. 1993, CRC Press: Boca Raton. p. 163-181.
    63. Hsu, S.-H., et al., Leptospiral Outer Membrane Lipoprotein LipL32 Binding on Toll-like Receptor 2 of Renal Cells As Determined with an Atomic Force Microscope. Biochemistry, 2010. 49(26): p. 5408-5417.
    64. Takeda, K. and S. Akira, TLR signaling pathways. Semin Immunol, 2004. 16(1): p. 3-9.
    65. Jin, M.S., et al., Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell, 2007. 130(6): p. 1071-82.
    66. Hoke, D.E., et al., LipL32 is an extracellular matrix-interacting protein of Leptospira spp. and Pseudoalteromonas tunicata. Infect. Immun., 2008. 76(5): p. 2063-2069.
    67. Hauk, P., et al., In LipL32, the Major Leptospiral Lipoprotein, the C Terminus Is the Primary Immunogenic Domain and Mediates Interaction with Collagen IV and Plasma Fibronectin. Infect. Immun., 2008. 76(6): p. 2642-2650.
    68. Gamberini, M., et al., Whole-genome analysis of Leptospira interrogans to identify potential vaccine candidates against leptospirosis. FEMS Microbiol Lett, 2005. 244(2): p. 305-13.
    69. Neves, F.O., et al., Identification of a novel potential antigen for early-phase serodiagnosis of leptospirosis. Arch Microbiol, 2007. 188(5): p. 523-32.
    70. Murray, G.L., et al., The major surface protein LipL32 is not required for either acute or chronic infection with Leptospira interrogans. Infect. Immun., 2008. 77: p. 952-958.
    71. Vivian, J.P., et al., Crystal structure of LipL32, the most abundant surface protein of pathogenic Leptospira spp. J. Mol. Biol., 2009. 387(5): p. 1229-38.
    72. Hauk, P., et al., Structure and calcium-binding activity of LipL32, the major surface antigen of pathogenic Leptospira sp. J Mol Biol, 2009. 390(4): p. 722-36.
    73. Schuck, P., et al., Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems. Biophys J, 2002. 82(2): p. 1096-111.
    74. McPherson, A., New York : John Wiley, 1982.
    75. Otwinowski, Z. and W. Minor, Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. , 1997. 276: p. 307-326.
    76. Sheldrick, G., A short history of SHELX. Acta Crystallographica Section A, 2008. 64(1): p. 112-122.
    77. Terwilliger, T. and J. Berendzen, Automated MAD and MIR structure solution. . Acta Crystallog, 1999. D55: p. 849-861.
    78. Terwilliger, T., Terwilliger T. Maximum-likelihood density modification. Acta Crystallog. , 2000. D56: p. 965-972.
    79. Vonrhein, C., et al., Automated structure solution with autoSHARP. Methods Mol. Biol., 2007. 364: p. 215-230.
    80. McRee, D.E., XtalView/Xfit--A versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol., 1999. 125: p. 156-165.
    81. Brunger, A.T., et al., Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr., 1998. 54: p. 905-921.
    82. Murshudov, G.N., A.A. Vagin, and E.J. Dodson, Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr., 1997. 53: p. 240-255.
    83. Adams, P.D., et al., PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr., 2002. 58: p. 1948-1954.
    84. Laskowski, R., et al., PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. , 1993. 26: p. 283-291.
    85. Caday, C.G. and R.F. Steiner, The interaction of calmodulin with the carbocyanine dye (Stains-all). J. Biol. Chem., 1985. 260(10): p. 5985-5990.
    86. Barbosa, A.S., et al., A Newly Identified Leptospiral Adhesin Mediates Attachment to Laminin. Infect. Immun., 2006. 74(11): p. 6356-6364.
    87. Brosh, R.M., Jr., et al., Replication protein A physically interacts with the Bloom's syndrome protein and stimulates its helicase activity. J Biol Chem, 2000. 275(31): p. 23500-8.
    88. Comeau, S.R., et al., ClusPro: a fully automated algorithm for protein-protein docking. Nucleic Acids Res., 2004a. 32(Web Server issue): p. W96-99.
    89. Comeau, S.R., et al., ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics, 2004b. 20(1): p. 45-50.
    90. Sharma, A., et al., Crystal structure of a heparin- and integrin-binding segment of human fibronectin. EMBO, 1999. 18: p. 1468-1479.
    91. Law, D.S., et al., Finding needles in haystacks: Reranking DOT results by using shape complementarity, cluster analysis, and biological information. Proteins: Structure, Function, and Bioinformatics, 2003. 52(1): p. 33-40.
    92. Guex, N. and M.C. Peitsch, SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 1997. 18: p. 2714-2723.
    93. Jones, S. and J.M. Thornton, Principles of protein-protein interactions. Proc. Natl. Acad. Sci. USA, 1996. 93(1): p. 13-20.
    94. Haake, D.A., et al., Characterization of leptospiral outer membrane lipoprotein LipL36: downregulation associated with late-log-phase growth and mammalian infection. Infect. Immun., 1998. 66(4): p. 1579-1587.
    95. Matthews, B.W., Solvent content of protein crystals. J. Mol. Biol., 1968. 33: p. 491-497.
    96. Sharma, Y., et al., Binding site conformation dictates the color of the dye stains-all. A study of the binding of this dye to the eye lens proteins crystallins. J. Biol. Chem., 1989. 264(35): p. 20923-20927.
    97. Rajini, B., et al., Calcium binding properties of gamma-crystallin: calcium ion binds at the Greek key beta gamma-crystallin fold. J. Biol. Chem., 2001. 276(42): p. 38464-38471.
    98. Lin, Y.-P., et al., Calcium Binds to Leptospiral Immunoglobulin-like Protein, LigB, and Modulates Fibronectin Binding. J. Biol. Chem., 2008. 283: p. 25140-25149.
    99. Michiels, J., et al., The functions of Ca2+ in bacteria: a role for EF-hand proteins? Trends Microbiol., 2002. 10(2): p. 87-93.
    100. Chang, Y.F., et al., Molecular analysis of the Actinobacillus pleuropneumoniae RTX toxin-III gene cluster. DNA Cell Biol., 1993. 12(4): p. 351-362.
    101. Cruz, W.T., et al., Deletion analysis resolves cell-binding and lytic domains of the Pasteurella leukotoxin. Mol. Microbiol., 1990. 4(11): p. 1933-1939.
    102. Ivey, D.M., et al., Cloning and characterization of a putative Ca2+/H+ antiporter gene from Escherichia coli upon functional complementation of Na+/H+ antiporter-deficient strains by the overexpressed gene. J. Biol. Chem., 1993. 268(15): p. 11296-11303.
    103. Scott, B.T., et al., Complete amino acid sequence of canine cardiac calsequestrin deduced by cDNA cloning. J. Biol. Chem., 1988. 263(18): p. 8958-8964.
    104. Fliegel, L., et al., Molecular cloning of the high affinity calcium-binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum. J. Biol. Chem., 1989. 264(36): p. 21522-21528.
    105. Hofmann, S.L., et al., Molecular cloning of a histidine-rich Ca2+-binding protein of sarcoplasmic reticulum that contains highly conserved repeated elements. J. Biol. Chem., 1989. 264(30): p. 18083-18090.
    106. Nicoll, D.A., S. Longoni, and K.D. Philipson, Molecular cloning and functional expression of the cardiac sarcolemmal Na+-Ca2+ exchanger. Science, 1990. 250(4980): p. 562-565.
    107. Caday, C.G., P.K. Lambooy, and R.F. Steiner, The interaction of Ca2+-binding proteins with the carbocyanine dye stains-all. Biopolymers, 1986. 25(8): p. 1579-1595.
    108. Johnson, R.C. and N.D. Gary, Nutrition of Leptospira Pomona. Iii. Calcium, Magnesium, and Potassium Requirements. J. Bacteriol., 1963. 85: p. 983-5.
    109. Shenberg, E., Growth of pathogenic Leptospira in chemically defined mediat. J. Bacteriol., 1967. 93: p. 1598-1606.
    110. Evans, G. and R.F. Pettifer, CHOOCH: a program for deriving anomalous-scattering factors from X-ray fluorescence spectra. Journal of Applied Crystallography, 2001. 34(1): p. 82-86.
    111. DeLano, W.L., The PyMOL Molecular Graphics System. (DeLano Scientific, Palo Alto, California, 2002).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE