研究生: |
徐漫齡 Hsu, Man Ling |
---|---|
論文名稱: |
製備三維奈米金顆粒/發泡石墨烯複合材料並應用於室溫下氨氣之感測 Synthesis of Gold-Nanoparticle-Decorated Graphene Foam Composites and Its Applications on Ammonia Gas Sensing at Room Temperature |
指導教授: |
戴念華
Tai, Nyan Hwa |
口試委員: |
李紫原
張晃猷 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 氨氣感測器 、氨氣 、石墨烯 |
外文關鍵詞: | gas sensor, ammonia gas, graphene |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究製備奈米金顆粒/發泡石墨烯複合材料,並將其應用於氨氣感測器。選用尺寸為10 mm × 10 mm、厚度1.7 mm的發泡鎳為基板,以化學氣相沉積法成長少層石墨烯於其上,並利用蝕刻方式去除鎳,即可得到一個具備三維網狀結構的發泡石墨烯。研究中亦利用無電鍍沉積法,將奈米金顆粒沉積於發泡石墨烯表面,並調整浸鍍參數,如溶液濃度及浸鍍時間,以得到不同的金顆粒大小與數量。發泡石墨烯之電洞載子濃度,於鍍金條件 (0.1 mM,10 sec) 之後,由5.50 × 1019 #/cm3增加至7.92 × 1019 #/cm3,顯示P型摻雜效果的提升。
結果顯示,發泡石墨烯於730 mg/m3純氨氣中達到接近1.0的感測靈敏度,並隨著氨氣量的增加呈現線性提升的關係。發泡石墨烯於空氣中,亦能對500 ppm氨氣達到0.68的感測靈敏度,而鍍金之發泡石墨烯,隨著奈米金顆粒數量增加、尺寸均勻性上升,其響應時間、回復時間有減少的趨勢,顯示對氨氣反應速率的提升。本元件製備方法簡單,室溫下對ppm濃度等級的氨氣有感測靈敏度,鍍金條件 (0.1 mM,10 sec) 之發泡石墨烯,在500 ppm氨氣中達到0.62的靈敏度,並且顯示極佳的可逆性及穩定性。因此,本研究製備之奈米金顆粒/發泡石墨烯複合材料,於室溫下的氨氣感測,具有相當的應用潛力。
This work fabricated gold-nanoparticle-decorated graphene foam composites which were applied to ammonia gas sensors. A three dimensional graphene foam was prepared through the chemical vapor deposition using Ni foam as substrate. Gold nanoparticles were deposited on graphene surface by the substrate-enhanced electroless deposition method. Gold particles with different sizes and number could be obtained by adjusting concentration of HAuCl4 solution and deposition time. The carrier concentration of graphene foam increased from 5.50 × 1019 #/cm3 to 7.92 × 1019 #/cm3 immersion in 0.1 mM HAuCl4 for 10 sec showing enhanced p-type doping.
Graphene foam showed sensitivity close to 1.0 under 730 mg/m3 ammonia and the sensitivity increased linearly with the amount of ammonia under vacuum background. Using air as background gas, graphene foam showed 0.68 sensitivity under 500 ppm ammonia, and gold nanoparticle-decorated graphene foam showed shorter response time and recovery time with the increase of amount and homogeneity of gold nanoparticles. The sensor prepared using the deposition condition of (0.1 mM, 10 sec) for gold nanoparticles showed reversibility and stability under 500 ppm ammonia exposure. In this study, we successfully synthesized gold nanoparticle-decorated graphene foam composite and demonstrated its promising potential in ammonia gas sensing.
[1] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature materials, vol. 6, pp. 183-191, 2007.
[2] E. Fradkin, "Critical behavior of disordered degenerate semiconductors. II. Spectrum and transport properties in mean-field theory," Physical Review B, vol. 33, pp. 3263-3268, 1986.
[3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., "Electric field effect in atomically thin carbon films," science, vol. 306, pp. 666-669, 2004.
[4] W. A. De Heer, C. Berger, X. Wu, M. Sprinkle, Y. Hu, M. Ruan, et al., "Epitaxial graphene electronic structure and transport," Journal of Physics D: Applied Physics, vol. 43, p. 374007, 2010.
[5] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, et al., "Electronic confinement and coherence in patterned epitaxial graphene," Science, vol. 312, pp. 1191-1196, 2006.
[6] W. S. Hummers Jr and R. E. Offeman, "Preparation of graphitic oxide," Journal of the American Chemical Society, vol. 80, pp. 1339-1339, 1958.
[7] B. C. Brodie, "On the atomic weight of graphite," Philosophical Transactions of the Royal Society of London, vol. 149, pp. 249-259, 1859.
[8] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, et al., "Highly conducting graphene sheets and Langmuir–Blodgett films," Nature nanotechnology, vol. 3, pp. 538-542, 2008.
[9] S. Nguyen, R. Ruoff, S. Stankovich, D. Dikin, R. Piner, K. Kohlhaas, et al., "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide," Carbon, vol. 45, pp. 1558-1565, 2007.
[10] S. Park and R. S. Ruoff, "Chemical methods for the production of graphenes," Nature nanotechnology, vol. 4, pp. 217-224, 2009.
[11] H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park, I. S. Jung, et al., "Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance," Advanced Functional Materials, vol. 19, pp. 1987-1992, 2009.
[12] W. Qian, R. Hao, Y. Hou, Y. Tian, C. Shen, H. Gao, et al., "Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality," Nano Research, vol. 2, pp. 706-712, 2009.
[13] C. Mattevi, H. Kim, and M. Chhowalla, "A review of chemical vapour deposition of graphene on copper," Journal of Materials Chemistry, vol. 21, pp. 3324-3334, 2011.
[14] Y. Pan, H. Zhang, D. Shi, J. Sun, S. Du, F. Liu, et al., "Highly ordered, millimeter‐scale, continuous, single‐crystalline graphene monolayer formed on Ru (0001)," Advanced Materials, vol. 21, pp. 2777-2780, 2009.
[15] P. Sutter, J. T. Sadowski, and E. Sutter, "Graphene on Pt (111): Growth and substrate interaction," Physical Review B, vol. 80, p. 245411, 2009.
[16] J. Wintterlin and M.-L. Bocquet, "Graphene on metal surfaces," Surface Science, vol. 603, pp. 1841-1852, 2009.
[17] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei, "Graphene segregated on Ni surfaces and transferred to insulators," Applied Physics Letters, vol. 93, p. 113103, 2008.
[18] J. Coraux, M. Engler, C. Busse, D. Wall, N. Buckanie, F.-J. M. Zu Heringdorf, et al., "Growth of graphene on Ir (111)," New Journal of Physics, vol. 11, p. 023006, 2009.
[19] A. Reina, S. Thiele, X. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A. Schaefer, et al., "Growth of large-area single-and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces," Nano Research, vol. 2, pp. 509-516, 2009.
[20] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, et al., "Large-area synthesis of high-quality and uniform graphene films on copper foils," Science, vol. 324, pp. 1312-1314, 2009.
[21] G. Schmid and B. Corain, "Nanoparticulated gold: syntheses, structures, electronics, and reactivities," European Journal of Inorganic Chemistry, vol. 2003, pp. 3081-3098, 2003.
[22] 王世敏, 許祖勛, and 傅晶, 奈米材料原理與製備: 五南圖書出版股份有限公司, 2004.
[23] H. Gleiter, "Nanocrystalline materials," in Advanced Structural and Functional Materials, ed: Springer, 1991, pp. 1-37.
[24] C. Suryanarayana and C. Koch, "Nanocrystalline materials–Current research and future directions," Hyperfine Interactions, vol. 130, pp. 5-44, 2000.
[25] S. Peng, Y. Lee, C. Wang, H. Yin, S. Dai, and S. Sun, "A facile synthesis of monodisperse Au nanoparticles and their catalysis of CO oxidation," Nano research, vol. 1, pp. 229-234, 2008.
[26] R. Roy, R. A. Roy, and D. M. Roy, "Alternative perspectives on “quasi-crystallinity”: Non-uniformity and nanocomposites," Materials Letters, vol. 4, pp. 323-328, 1986.
[27] B. Harris, Engineering composite materials. London: The Institute of Materials, 1999.
[28] C. Li, H. Bai, and G. Shi, "Conducting polymer nanomaterials: electrosynthesis and applications," Chemical Society Reviews, vol. 38, pp. 2397-2409, 2009.
[29] T. Wagner, S. Haffer, C. Weinberger, D. Klaus, and M. Tiemann, "Mesoporous materials as gas sensors," Chemical Society Reviews, vol. 42, pp. 4036-4053, 2013.
[30] L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, and J. T. Hupp, "Metal–organic framework materials as chemical sensors," Chemical reviews, vol. 112, pp. 1105-1125, 2011.
[31] H. Bai, C. Li, and G. Shi, "Pyrenyl excimers induced by the crystallization of POSS moieties: Spectroscopic studies and sensing applications," ChemPhysChem, vol. 9, pp. 1908-1913, 2008.
[32] H. Bai and G. Shi, "Gas sensors based on conducting polymers," Sensors, vol. 7, pp. 267-307, 2007.
[33] H. Bai, L. Zhao, C. Lu, C. Li, and G. Shi, "Composite nanofibers of conducting polymers and hydrophobic insulating polymers: preparation and sensing applications," Polymer, vol. 50, pp. 3292-3301, 2009.
[34] A. Chen and P. Holt-Hindle, "Platinum-based nanostructured materials: synthesis, properties, and applications," Chem. Rev, vol. 110, pp. 3767-3804, 2010.
[35] Y. Itagaki, K. Deki, S.-I. Nakashima, and Y. Sadaoka, "Toxic gas detection using porphyrin dispersed polymer composites," Sensors and Actuators B: Chemical, vol. 108, pp. 393-397, 2005.
[36] J. S. Lee, O. S. Kwon, S. J. Park, E. Y. Park, S. A. You, H. Yoon, et al., "Fabrication of ultrafine metal-oxide-decorated carbon nanofibers for DMMP sensor application," ACS nano, vol. 5, pp. 7992-8001, 2011.
[37] C. Li and G. Shi, "Three-dimensional graphene architectures," Nanoscale, vol. 4, pp. 5549-5563, 2012.
[38] M. Mohammadi and D. Fray, "Development of nanocrystalline TiO2-Er2O3 and TiO2-Ta2O5 thin film gas sensors: Controlling the physical and sensing properties," Sensors and Actuators B: Chemical, vol. 141, pp. 76-84, 2009.
[39] D. Wang, A. Chen, and A. K.-Y. Jen, "Reducing cross-sensitivity of TiO 2-(B) nanowires to humidity using ultraviolet illumination for trace explosive detection," Physical Chemistry Chemical Physics, vol. 15, pp. 5017-5021, 2013.
[40] G. Yang, C. Lee, J. Kim, F. Ren, and S. J. Pearton, "Flexible graphene-based chemical sensors on paper substrates," Physical Chemistry Chemical Physics, vol. 15, pp. 1798-1801, 2013.
[41] F. Zee and J. W. Judy, "Micromachined polymer-based chemical gas sensor array," Sensors and Actuators B: Chemical, vol. 72, pp. 120-128, 2001.
[42] X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, "A survey on gas sensing technology," Sensors, vol. 12, pp. 9635-9665, 2012.
[43] Y.-F. Sun, S.-B. Liu, F.-L. Meng, J.-Y. Liu, Z. Jin, L.-T. Kong, et al., "Metal oxide nanostructures and their gas sensing properties: a review," Sensors, vol. 12, pp. 2610-2631, 2012.
[44] B.-Y. Wei, M.-C. Hsu, P.-G. Su, H.-M. Lin, R.-J. Wu, and H.-J. Lai, "A novel SnO 2 gas sensor doped with carbon nanotubes operating at room temperature," Sensors and Actuators B: Chemical, vol. 101, pp. 81-89, 2004.
[45] S. Lakkis, R. Younes, M. Ghandour, and Y. Alayli, "New Optical Gas Sensor for Gas Concentration Measurement Using Digital Image Processing," Sensors and Actuators B: Chemical, vol. 207, pp. 321-329, 2015.
[46] Z. P. Khlebarov, A. I. Stoyanova, and D. I. Topalova, "Surface acoustic wave gas sensors," Sensors and Actuators B: Chemical, vol. 8, pp. 33-40, 1992.
[47] C. Zheng, X. Zhou, H. Cao, G. Wang, and Z. Liu, "Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material," Journal of power sources, vol. 258, pp. 290-296, 2014.
[48] J. C. Meyer, C. O. Girit, M. Crommie, and A. Zettl, "Imaging and dynamics of light atoms and molecules on graphene," Nature, vol. 454, pp. 319-322, 2008.
[49] M. Gautam and A. H. Jayatissa, "Gas sensing properties of graphene synthesized by chemical vapor deposition," Materials Science and Engineering: C, vol. 31, pp. 1405-1411, 2011.
[50] G. Ko, H.-Y. Kim, J. Ahn, Y.-M. Park, K.-Y. Lee, and J. Kim, "Graphene-based nitrogen dioxide gas sensors," Current Applied Physics, vol. 10, pp. 1002-1004, 2010.
[51] F. Schedin, A. Geim, S. Morozov, E. Hill, P. Blake, M. Katsnelson, et al., "Detection of individual gas molecules adsorbed on graphene," Nature materials, vol. 6, pp. 652-655, 2007.
[52] W. Yuan and G. Shi, "Graphene-based gas sensors," Journal of Materials Chemistry A, vol. 1, pp. 10078-10091, 2013.
[53] T. Wang, D. Huang, Z. Yang, S. Xu, G. He, X. Li, et al., "A Review on Graphene-Based Gas/Vapor Sensors with Unique Properties and Potential Applications," Nano-Micro Letters, vol. 8, pp. 95-119, 2016.
[54] Y.-H. Zhang, Y.-B. Chen, K.-G. Zhou, C.-H. Liu, J. Zeng, H.-L. Zhang, et al., "Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study," Nanotechnology, vol. 20, p. 185504, 2009.
[55] A. Salehi‐Khojin, D. Estrada, K. Y. Lin, M. H. Bae, F. Xiong, E. Pop, et al., "Polycrystalline graphene ribbons as chemiresistors," Advanced Materials, vol. 24, pp. 53-57, 2012.
[56] J. Yi, J. M. Lee, and W. I. Park, "Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors," Sensors and Actuators B: Chemical, vol. 155, pp. 264-269, 2011.
[57] A. Kaniyoor, R. I. Jafri, T. Arockiadoss, and S. Ramaprabhu, "Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor," Nanoscale, vol. 1, pp. 382-386, 2009.
[58] Z. Ao, J. Yang, S. Li, and Q. Jiang, "Enhancement of CO detection in Al doped graphene," Chemical Physics Letters, vol. 461, pp. 276-279, 2008.
[59] M. Gautam and A. H. Jayatissa, "Ammonia gas sensing behavior of graphene surface decorated with gold nanoparticles," Solid-State Electronics, vol. 78, pp. 159-165, 2012.
[60] F. Yavari, Z. Chen, A. V. Thomas, W. Ren, H.-M. Cheng, and N. Koratkar, "High sensitivity gas detection using a macroscopic three-dimensional graphene foam network," Scientific reports, vol. 1, 2011.
[61] H. Vedala, D. C. Sorescu, G. P. Kotchey, and A. Star, "Chemical sensitivity of graphene edges decorated with metal nanoparticles," Nano letters, vol. 11, pp. 2342-2347, 2011.
[62] S. Kumar, N. McEvoy, T. Lutz, G. Keeley, N. Whiteside, W. Blau, et al., "Low temperature graphene growth," ECS Transactions, vol. 19, pp. 175-181, 2009.
[63] S. Pelfrey, T. Cantu, M. R. Papantonakis, D. L. Simonson, R. A. McGill, and J. Macossay, "Microscopic and spectroscopic studies of thermally enhanced electrospun PMMA micro-and nanofibers," Polymer chemistry, vol. 1, pp. 866-869, 2010.
[64] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. Saha, U. Waghmare, et al., "Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor," Nature nanotechnology, vol. 3, pp. 210-215, 2008.
[65] C. C. Li, L. B. Chen, Q. H. Li, and T. H. Wang, "Seed-free, aqueous synthesis of gold nanowires," CrystEngComm, vol. 14, pp. 7549-7551, 2012.
[66] S. Pat, Ş. Korkmaz, S. Özen, and V. Şenay, "GaN thin film deposition on glass and PET substrates by thermionic vacuum arc (TVA)," Materials Chemistry and Physics, vol. 159, pp. 1-5, 2015.
[67] D. K. Božanić, A. S. Luyt, L. V. Trandafilović, and V. Djoković, "Glycogen and gold nanoparticle bioconjugates: controlled plasmon resonance via glycogen-induced nanoparticle aggregation," RSC Advances, vol. 3, pp. 8705-8713, 2013.
[68] C. M. Ghimbeu, J. Schoonman, M. Lumbreras, and M. Siadat, "Electrostatic spray deposited zinc oxide films for gas sensor applications," Applied Surface Science, vol. 253, pp. 7483-7489, 2007.
[69] K. K. Khun, A. Mahajan, and R. Bedi, "SnO2 thick films for room temperature gas sensing applications," J. Appl. Phys, vol. 106, p. 124509, 2009.
[70] S. Lam, M. Chan, and D. Lo, "Characterization of phosphorescence oxygen sensor based on erythrosin B in sol–gel silica in wide pressure and temperature ranges," Sensors and Actuators B: Chemical, vol. 73, pp. 135-141, 2001.
[71] G. Giovannetti, P. Khomyakov, G. Brocks, V. v. Karpan, J. Van den Brink, and P. Kelly, "Doping graphene with metal contacts," Physical Review Letters, vol. 101, p. 026803, 2008.