簡易檢索 / 詳目顯示

研究生: 彭立成
論文名稱: 在偏豪斯多夫度量空間上滿足梅厄-基勒收縮函數之一些新定點理論
指導教授: 陳啟銘
口試委員:
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 應用數學系所
應用數學系所(English)
論文出版年: 2016
畢業學年度: 104
語文別: 中文
中文關鍵詞: 偏度量豪斯多夫梅厄-基勒
外文關鍵詞: partial metric, Hausdorff, Meir-Keeler
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文的目的是研究定點定理與在偏豪斯多夫度量空間上滿足梅厄-基勒收縮函數。我們的研究結果推廣和改進了最近許多固定點定理在局部Hausdorff度量上。


    The purpose of this paper is to study fixed point theorems for a multivalued mapping concerning with three classes of Meir-Keeler contractions with respect to the partial Hausdorff metric H in complete partial metric spaces.
    Our results generalize and improve many recent fixed point
    theorems for the partial Hausdorff metric in the literature.

    P1~P7 介紹偏度量、多值與梅厄-基勒函數 P7~P14 主要定理 P15~P20 結論 P20~P22 參考文獻

    [1] T. Abdeljawad, Fixed points for generalized weakly contractive mappings
    in partial metric spaces, Mathematical and Computer Modelling, 54(2011),
    2923–2927.
    [2] R.P. Agarwal, M.A. Alghamdi, N. Shahzad, Fixed point theory for cyclic
    generalized contractions in partial metric spaces, Fixed Point Theory and
    Appl., (2012), 2012.40.
    [3] I. Altun, A. Erduran, Fixed point theorems for monotone mappings on
    partial metric spaces, Fixed Point Theory and Appl., (2011), Article ID
    508730, 10 pages, 2011.
    [4] H. Aydi, Fixed point results for weakly contractive mappings in ordered
    partial metric spaces, Journal of Advanced Mathematical Studies, 4(2011),
    no. 2, pp. 1–12.
    [5] H. Aydi, M. Abbas, C. Vetro, Partial Hausdorff metric and Nadler’s
    fixed point theorem on partial metric spaces, Topology and Applications,
    159(2012), 3234–3242.
    [6] S. Banach, Sur les op´erations dans les ensembles abstraits et leur applica-
    tion aux ´equations int´egrales, Fund. Math. 3 (1922) 133–181.
    [7] Chi-Ming Chen, Erdal Karapinar,Fixed point results for the -Meir-Keeler
    contraction on partialHausdorff metric spaces, Journal of Inequalities and
    Applications 2013, 2013:410.
    [8] K. P. Chi, E. Karapinar, T. D. Thanh, A generalized contraction principle
    in partial metric spaces, Mathematical and Computer Modelling, 55(2012),
    1673–1681.
    [9] R.H. Haghi, Sh. Rezapour, N. Shahzad, Be careful on partial metric fixed
    point results, Topology and its Applications,160(2013),no:3, 450–454.
    [10] E. Karapinar, Weak -contraction on partial metric spaces, Journal of
    Computational Analysis and Applications, 16(6),(2012) vol. 14, no. 2, pp.
    206–210.
    [11] E. Karapinar, Generalizations of Caristi Kirks theorem on partial metric
    spaces, Fixed Point Theory and Applications, vol. 2011, article 4, 2011.
    [12] E. Karapinar, I.M. Erhan, Fixed point theorem for cyclic maps on partial
    metric spaces, Appl. Math. Inf. Sci., 6 (2012), 239–244.
    [13] S.G. Matthews, Partial metric topology, Proc. 8th Summer of Conference
    on General Topology and Applications, Ann. New York Aced. Sci., 728
    (1994) 183–197.
    [14] Meir, A, Keeler, E: A theorem on contraction mappings, J. Math. Anal.
    Appl., 28 (1969), 326–329
    [15] S. B. Nadler Multi-valued contraction mappings, Pacific J. Math., 30
    (1969), 475–488.
    [16] S. Oltra, O. Valero, Banach’s fixed point theorem for partial metric spaces,
    Rend. Istid Math. Univ. Trieste, 36 (2004) 17–26.
    [17] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for - -contractive
    type mappings, Nonlinear Analysis, 75 (2012) 2154–2165.
    [18] S. Reich, Fixed points of contractive functions, Boll Un Mat Ital., 75 (1972)
    5(4):26–42.
    22

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE