簡易檢索 / 詳目顯示

研究生: 陳彥珉
Chen, Yan-Min
論文名稱: 側壁式電極之太陽能電池製作
Fabricate of Silicon Wafer-Based Solar Cell with Edge Electrodes
指導教授: 王立康
Wang, Li-Karn
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 58
中文關鍵詞: solar celledge electrodes
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一個基本的太陽能電池需要一個PN接面,前後加上電極最後還要一層抗反射層,到了如今,各個團隊設計出了各種結構太陽電池,也就是為了希望能提升太陽電池效率,而其中幾種較常見的高效率太陽電池例如埋入式接點太陽電池(Buried-Contact Solar Cell,BCSC),它的特色為增加電極收集載子的能力,又或者是例如格柵(Grating)太陽電池,其主要概念是利用蝕刻技術將電池表面做格柵狀之結構,以增加入射光的利用。
    在過往有研究團隊研發出一種名為OECO(obliquely evaporated contacts)太陽能電池,其目的是利用斜向電極的特性,改善光的遮蔽率,以達到效率的提升。在結構的製作過程中,他們利用多重的刀片,在晶圓上刻劃出數條的垂直溝槽,在電極的部分,則是利用專屬設計的蒸鍍腔體讓金屬能以斜向的方式蒸鍍在垂直溝槽的斜邊上,如此完成一個元件。而在本實驗中,則是選擇乾蝕刻機台去取代刀片,在晶圓上以非等向性的方式蝕刻出垂直結構,並想辦法將元件侵斜一個角度以利於斜向的蒸鍍,藉由上述的步驟,希望能達到提升效率的目的。
    本文中也會利用加熱過後的KOH去對矽基板作蝕刻的動作,將表面製作出斜面的結構並對其作斜向蒸鍍的金屬製程,完成所有程序後將其與垂直結構的元件作效率上的一個比較,最後對有缺失的地方提出改進的方法並做分析與討論。


    第一章 序論…………………………………………………………1 前言…………………………………………………………1 1-1文獻回顧……………………………………………………1 1-2 研究動機……………………………………………………3 1-3 論文架構……………………………………………………4 第二章 基本理論…………………………………………………5 2-1太陽能電池…………………………………………………5 2-1-1太陽光譜………………………………………………5 2-1-2 太陽能電池原理……………………………………6 2-1-3 太陽能電池基本結構………………………………8 2-1-4 太陽能電池基本參數………………………………10 2-1-5 效率與能隙關係……………………………………15 2-1-6 太陽電池與電阻之關係……………………………15 2-2 影響效率的原因……………………………………………18 第三章 實驗方法與流程…………………………………………20 3-1 元件結構…………………………………………………20 3-2 實驗流程與機台簡介……………………………………21 第四章 結果與討論………………………………………………37 4-1 結構之SEM圖………………………………………………37 4-2 I-V曲線比較………………………………………………39 4-3 量子效率(EQE)比較………………………………………46 4-4 不同結構之斜向蒸鍍比較…………………………………47 4-5 垂直結構與斜向結構之I-V曲線比較……………………49 4-6 垂直結構與斜向結構之EQE曲線比較……………………51 4-7 不同的METAL FINGER間距之比較…………………………51 第五章 結論………………………………………………………54 參考文獻……………………………………………………………56 圖目錄 圖1-1 典型太陽電池………………………………………………2 圖1-2 OECO太陽電池之蒸鍍系統…………………………………3 圖1-3 OECO太陽電池主要結構…………………………………3 圖2-1 AM1.5的示意圖………………………………………………4 圖2-2 p型半導體摻雜示意圖………………………………………6 圖2-3 n型半導體摻雜示意圖……………………………………6 圖2-4 p-n接面太陽能電池能帶圖………………………………7 圖2-5 太陽電池基本結構圖………………………………………8 圖2-6 ARC示意圖…………………………………………………8 圖2-7 表面粗糙化示意圖………………………………………10 圖2-8 太陽能電池照光下等效電路圖……………………………10 圖2-9 照光下的I-V曲線圖…………………………………………11 圖2-10 相對應的輸出功率與電壓的曲線圖………………………11 圖2-11 太陽電池理想等效電路圖…………………………………12 圖2-12 金屬-半導體接面位能障壁………………………………17 圖2-12 表面高參雜濃度的半導體-金屬接面……………………17 圖3-1 太陽電池俯視圖案…………………………………………20 圖3-2 太陽電池側邊結構圖………………………………………20 圖3-3 實驗流程圖…………………………………………………21 圖3-4 水平爐管示意圖……………………………………………22 圖3-5 光阻塗佈機示意圖…………………………………………23 圖3-6 曝光機台示意圖……………………………………………24 圖3-7 乾蝕刻流程…………………………………………………25 圖3-8 濕蝕刻底切效應與乾蝕刻之比較………………………26 圖3-9 乾蝕刻機台示意圖…………………………………………27 圖3-10 非等向性蝕刻機制………………………………………28 圖3-11 擴散爐管示意圖…………………………………………29 圖3-12 擴散簡易圖………………………………………………29 圖3-13 二次曝光顯影示意圖……………………………………31 圖3-14 前電極製程示意圖………………………………………31 圖3-15 前電極製程示意圖………………………………………32 圖3-16 斜向蒸鍍整體構造示意圖………………………………32 圖3-17 孔洞斜向蒸鍍示意圖……………………………………33 圖3-18 E-gun示意圖,………………………………………………34 圖3-19 PECVD示意圖………………………………………………35 圖4-1 垂直溝槽整體圖示…………………………………………37 圖4-2 垂直溝槽側邊圖示…………………………………………38 圖4-3 sample A 之I-V曲線圖…………………………………40 圖4-4 sample B之I-V曲線圖…………………………………40 圖4-5 sample C之I-V曲線圖…………………………………41 圖4-6 reference之I-V曲線圖…………………………………41 圖4-7(a) diffusion 1min之srp…………………………43 圖4-7(b) diffusion 30min之srp…………………………43 圖4-7(c) 兩者diffusion之srp比較…………………44 圖4-8 側邊結構之缺陷…………………………………………45 圖4-9 垂直結構示意圖…………………………………………45 圖4-10 各個原件之EQE分佈……………………………………46 圖4-11 斜面結構之斜向蒸鍍……………………………………48 圖4-12 sample A 與sample D之I-V比較圖…………………49 圖4-13 斜面結構示意圖……………………………………………50 圖4-14 各元件之EQE分佈…………………………………………51 圖4-15 sample A 與sample E之I-V比較圖…………………52 表目錄 表3-1 RCA clean 配方………………………………………………22 表4-1 製程條件差異…………………………………………………39 表4-2 各元件參數之比較……………………………………………42 表4-3製程條件差異…………………………………………………49 表4-4 元件參數之比較………………………………………………50 表4-5製程條件差異…………………………………………………52 表4-6 元件參數之比較………………………………………………53

    [1] http://www.simosolar.com/up_files/Image/pic/wor d/air_mass.jpg

    [2] I.Lee ,D.G.Lim ,S.H.Lee and J.Yi, “The effect of adouble layer anti-reflection coating for a buried contact solar cell application, Surface and Coatings Technology”, Vol.137,No.1,pp.86-91,2001

    [3] N.Senoussaoui,M.Krause,J.Muller,E.Bunte,T.Brammer and H.Stiebig,“Thin-film solar cells with periodic grating coupler”,Thin Solid Film ,vol.451-452 ,pp.397-401,2004

    [4] R.Hezel, “High-efficiency OECO Czochralski-silicon solar cells for mass production”,Solar Energy Materials and Solar Cells,Vol.74,No.1-4,pp.25-33,2002

    [5] http://www.hk-phy.org/energy/alternate/solar_phy/images/solar_cell_struc_c.gif

    [6] P.Campbell,S.R.Wwnham,and M.A.Green,“Light trapping and reflection control with tilted pyramids and grooves”,in Conf.REc.20th IEEE Photovolt.Special.Conf.(Las Vegas.),Sept,1998,p.713.

    [7] 戴寶通 , 鄭晃中 ,太陽能電池技術手冊 ,台灣電子材料與元件協會 出版

    [8] Hong Xiao,Introduction to Semiconductor Manufacturing Technology,Pearson Education Taiwan Ltd.

    [9] Zhizhang Chen, Peyman Sana, Jalal Salami, and Ajeet Rohatgi,“A Novel and Effective
    Antireflection Coating PECVD Si02/SiN for Si Solar Cells”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 40, NO. 6,pp.1161-1165,1993

    [10] Weeber A. W. et al,“ Structural and passivating properties of SiNx:H deposited using different precursor gases”, Proceedings of the 19th European Photovoltaic solar energy conference, p 1005 7-11 June 2004, Paris, France

    [11] Ms Priyanka, Mohan lab, Ravi Kumar, S.N.Singh , “Optimum Hydrogen Passivation by PECVD Si3N4 Deposited Crystalline Silicon Solar Cells” Photovoltaic Specialists Conference, 2005. Conference Record of the Thirty-first IEEE ,pp. 1313 – 1315 , 2005

    [12] 胡雁程,矽晶太陽能電池鈍化技術之研究:硝酸浸泡方式處理及氫還原氣搭配氮化矽鈍化,清華大學光電工程研究所

    [13] X. Loozen1, J. John1, P. Choulat1, Yue Ma1, H.F.W. Dekkers1, G. Agostinelli1,2 and G. Beaucarne1,“ Effectiveness of Atomic and Molecular Hydrogen Passivation of a Silicon/Silicon Oxide Interface with a Deposited Oxide”

    [14] A. Stesmans, “Interaction of Pb defects at the (111)SiÕ/SiO2 interface with molecular hydrogen: Simultaneous action of passivation and dissociationJ”. Appl. Phys. Vol.88, 489 (2000)

    [15] Hezel, R.; Schmiga, C.; Metz, A.“ Next generation of industrial silicon solar cells with efficiencies above 20% ”, Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE , PP: 184 – 187 ,2000

    [16] Bhushan Sopori and Yi Zhang,“H-Diffusion Mechanism(s) in PECVD Nitride Passivation of Si Solar Cells”,NCPV 1st Conf.Program Review Meeting,Lakewood Colorado, pp.14-17,2001

    [17] Ms Priyanka, Mohan lab, Ravi Kumar, S.N.Singh,“Optimum hydrogen passivation by PECVD Si3N4 deposited crystalline silicon solar cells ”, Photovoltaic Specialists Conference, Conference Record of the Thirty-first IEEE ,2005

    [18] S. R. Wenham,1_ B. O. Chan,1 C. B. Honsberg1 and M. A. Green1,“Beneficial and Constraining Effects of Laser Scribing in Buried-contact Solar Cells”, PROGRESS IN PHOTOVOLTAICS: RESEARCH AND APPLICATIONS, VOL. 5, PP.131-137 ,1997

    [19] Martin Verbeek, Axel Metz, Armin G. Aberle, and Rudolf Hezel,“Mechanically grooved high-efficiency silicon solar cells with self-aligned metallisation ”, Photovoltaic Specialists Conference,Conference Record of the Twenty Fifth IEEE , PP: 521–524 ,1996

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE