簡易檢索 / 詳目顯示

研究生: 蔡忠浩
Cai, Chung-Hao
論文名稱: 後硒化製程中添加硫化錫粉末對銅鋅錫硫硒薄膜太陽能電池的影響
The influence of SnS powder during selenization on CZTSSe thin film solar cells
指導教授: 賴志煌
Lai, Chih-Huang
口試委員: 甘炯耀
江建志
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 57
中文關鍵詞: 後硒化製程硫化錫銅鋅錫硫硒薄膜
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 提出一種新穎製程製備Cu2ZnSn(S,Se)4 (CZTSSe)吸收層,此新穎製程即為把真空濺鍍製備的前驅層在後硒化製程中添加硫化錫粉末來形成出良好的CZTSSe吸收層。我們從成分上,結構上,表面形貌上,以及電性上探究硫化錫粉末在硒化製程中扮演的角色,最後我們發現硫化錫粉末能夠抑制錫在高溫反應跑出薄膜,並且S/S+Se的比例也能藉由添加硫化錫粉末來調控更影響了吸收層的能隙大小,除此之外,Mo(S,Se)2的厚度也藉由此方法來良好控制,最後利用此方法製備CZTSSe薄膜太陽能電池能達到7.35%的光電轉換效率。


    A novel process to obtain high quality Cu2ZnSn(S,Se)4 (CZTSSe) absorber is proposed by incorporating SnS together with selenium during selenization of stacked precursors. The effects of incorporating SnS powder during selenization are investigated in terms of composition, structure, morphology and electric properties. It is demonstrated that tin loss issue has been solved and S/(Se+S) ratio which ranging from 0 to 0.25 can also be preciously controlled at the same time by tuning the amount of SnS powder during selenization process, in addition, the formation of Mo(S,Se)2 also be suppressed. The solar cells show a significant increment of open circuit voltage and filler factor due to the increasing of CZTSSe band gap and reducing the thickness of Mo(S,Se)2, respectively. Good efficiency achieved with CZTSSe absorber produced through IBSD (Ion beam Sputtering deposition) following selenization is proposed. As a result, solar cell efficiency up to 7.35% was obtained, originating from 3.73% for pure selenization without SnS powder.

    目錄 1 引言...................... 7 2 文獻回顧...................11 2-1銅鋅錫硫硒太陽能電池............11 2-2 CZTSSe的晶體結構..............12 2-3錫散失(Tin loss effect) ............ 14 2.4 Mo(S,Se)2層的調控..............18 2-5 CZTSSe太陽能電池的結構...........19 2-6真空製程製作CZTSSe............ 21 2-7非真空製程製作CZTSSe........... 27 3 分析儀器與實驗方法............ 29 3.1實驗流程..................29 3.2實驗設備介紹................31 3.2.1離子束濺鍍系統.............. 31 3.2.2硒化爐.................. 32 3.2.3X光繞射儀................ 32 3.2.4拉曼光譜分析儀.............. 33 3.2.5冷場發電子顯微鏡............. 34 3.2.6太陽光模擬器Keitheley 4200CS....... 35 3.2.7外部量子效率量測儀............ 36 3.2.8感應耦合電漿質譜儀............ 36 3.2.9光激螢光量測系統............. 37 4 結果與討論................. 38 4.1 CZTSSe薄膜成分分析............. 38 4.2 CZTSSe薄膜結構分析............. 40 4.3 CZTSSe薄膜光致發光特性.......... 44 4.4 CZTSSe薄膜微結構分析............44 4.5 CZTSSe元件電性分析.............46 4.6理論分析與熱力學運算............49 5 結論...................... 51 6 參考文獻...................52 圖表目錄 圖2.1:常見薄膜太陽能電池所需元素之交易價錢與產量表........................12 圖2.2:黃銅礦、鋅黃錫礦與黃錫礦的結構示意圖........................13 圖2.3:ZnS-Cu2S-SnS2的相圖............ 14 圖2.4:CZTS薄膜有/無錫散失之效率比較圖......15 圖2.5:不同硫偏壓下,CZTS薄膜經過高溫退火時的錫散失比例.......................16 圖2.6:在固定硫氣氛與不同硫化錫氣氛下,CZTS經過高溫硫化時的錫散失比例................17 圖2.7:各種製程溫度、硒分壓和TiN層的引入對效率以及MoSe2厚度的影響.................18 圖2.8:CZTSSe太陽能電池結構示意圖........20 圖2.9:不同疊層結構經過硫化後的XRD....... 22 圖2.10:不同疊層結構經過硫化後的Raman......23 圖2.11:不同疊層結構經過硫化的SEM影像..... 24 圖2.12:CZTSe薄膜的SEM橫切面..........24 圖2.13:各種真空製程的效率整理圖.........26 圖2.14:CZTSe蒸鍍速率與溫度對時間圖.......26 圖2.15:各種非真空製程的效率整理圖........27 圖3.1 : 離子束濺鍍系統示意圖........... 31 圖3.2:硒化爐示意圖............... 32 圖3.3:布拉格繞射定律示意圖........... 33 圖3.4:CZTS、CZTSe以及CZTSSe的拉曼光譜.....34 圖3.5:Hitachi SU8010冷場發掃瞄式電子顯微鏡........................35 圖3.6 : 太陽光模擬器的規格............ 36 圖3.7:PL量測系統示意圖.............37 表4.1:在550℃硒化製程中添加不同硫化錫粉末反應製成CZTSSe的成份分析.................39 圖4.1:在550℃硒化製程中添加20毫克硫化錫粉末反應製成CZTSSe的X光繞射光譜............. 41 圖4.2:在550℃硒化製程中添加不同量的硫化錫粉末對Mo(S,Se)2影響的X光繞射光譜............ 41 圖4.3:在550℃硒化製程中添加不同硫化錫粉末反應對CZTSSe(112)繞射峰影響的X光繞射光譜....... 42 圖4.4:在550℃硒化製程中添加不同硫化錫粉末反應製成CZTSSe的拉曼光譜.................43 圖4.5:在550℃硒化製程中添加不同硫化錫粉末反應製成CZTSSe元件的PL圖................44 圖4.6:在550℃硒化製程中添加不同硫化錫粉末反應製成CZTSSe的SEM橫切面圖.............. 45 圖4.7:在550℃硒化製程中添加不同硫化錫粉末反應製成CZTSSe的元件I-V圖................47 表4.2:在550℃硒化製程中添加不同硫化錫粉末反應製成CZTSSe的元件I-V特性表..............47 圖4.8:在550℃硒化製程中添加不同硫化錫粉末反應製成CZTSSe的元件EQE圖............... 48

    [1]M.A. Green, K. Emery, Y. Hishikawa,W.Warta, E.D. Dunlop (2013). "Solar cell efficiency tables (version 42)|". Progress in Photovoltaics: Research and Application 21: 827–837

    [2]P. Jackson , D. Hariskos , E. Lotter , S Paetel , R. Wuerz , R. Menner , W. Wischmann , M. Powalla , New world record efficiency for Cu(In,Ga)Se2, Progress in Photovoltaics:Research and Application 19(2011)894-897

    [3] Wei Wang, Mark T. Winkler, Oki Gunawan, Tayfun Gokmen, Teodor K. Todorov, Yu Zhu, David B. Mitzi , Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency , Advanced Energy Materials , DOI: 10.1002/aenm.201301465

    [4] A.Redinger , D.M.Berg , P.J.Dale , N.Valle , S.Siebentritt , Route towards high efficiency single phase Cu2ZnSn(S,Se)4 thin film solar cells : model experiments and literature review, Journal of Photovoltaics1(2011)200–202

    [5] A.-J.Cheng, M.Manno, A.Khare, C.Leighton, S.A.Campbell, E.S.Aydil,
    Imaging and phase identification of Cu2ZnSnS4 thin films using confocal Raman spectroscopy,Journal of Vacuum Science and Technology A29(2011)051203.

    [6] A.Redinger, D.M.Berg, P.J.Dale, S.Siebentritt, The consequences of kesterite equilibria for efficient solar cells, Journal of the American Chemical Society 133 (2011)3320–3323

    [7] A.Weber, R.Mainz, H.W.Schock, On the Sn loss from thin films of the material systems Cu–Zn–Sn–S in high vacuum, Journal of Applied Physics 107 (2010)013516

    [8] J.J.Scragg, T.Ericson, T.Kubart, M.Edoff, C.Platzer-Bj ¨orkman, Chemical insights into the instability of Cu2ZnSnS4 films during annealing, Chemistry of Materials 23(2011)4625–4633

    [9] P.A.Fernandes, P.M.P.Salome´ , A.F.daCunha, Growth and Raman scattering characterization of Cu2ZnSnS4 thin films,Thin Solid Films 517(2009) 2519–2523.

    [10] X.Fontane´ , L.Calvo-Barrio, V.Izquierdo-Roca, E.Saucedo, A.Pe´ rez-Rodriguez, J.R. Morante ,D.M.Berg, P.J.Dale, S.Siebentritt, In-depth resolved Raman scattering analysis for the identification of secondary phases : characterization of Cu2ZnSnS4 layers for solar cell application, Applied Physics Letters 98 (2011) 181905.

    [11] K. Ito and T. Nakazawa, “Electrical and optical properties of
    stannite-type quaternary semiconductor thin films,” Japanese
    Journal of Applied Physics, vol. 27, no. 11, pp. 2094–2097, 1988

    [12] J. S. Seol, S. Y. Lee, J. C. Lee, H. D. Nam, and K. H. Kim,“Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process,” Solar Energy Materials and Solar Cells, vol. 75, no. 1-2, pp. 155–162, 2003

    [13] K. Jimbo, R. Kimura, T. Kamimura et al., “Cu2ZnSnS4-type thin film solar cells using abundant materials,” Thin Solid Films, vol. 515, no. 15, pp. 5997–5999, 2007.

    [14]H. Katagiri, K. Jimbo, S. Yamada et al., “Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique,” Applied Physics Express, vol. 1, no. 4, Article ID 041201, 2 pages, 2008

    [15] J.J. Scragg, T.Kubart, J.T.Wätjen, T.Ericson, M.K.Linnarsson, C.Platzer-Björkman, Effects of back contact instability on Cu2ZnSnS4 devices and processes, Chemistry of Materials 25(2013)3162–3171.

    [16]V. Chawla, B.Clemens, Effect of composition on high efficiency CZTSSe devices fabricated using co-sputtering of compound targets, in :Proceedings of the 38th IEEE Photovoltaic Specialists Conference,2012,pp.2990–2992.

    [17] S. Chen, X. G. Gong, A. Walsh, and S.-H. Wei, Appl. Phys. Lett. 94,
    41903 (2009).

    [18] A. weber, R.Mainz, H.w. schock, On the Sn loss from thin films of the material system Cu-Zn-Sn-S in high vacuum, Journal of Applied Physics,107,013516(2010);doi:10.1063/1.3273495

    [19] A. Redinger, D. M. Berg, P. J. Dale, S. Siebentritt, J. Am. Chem. Soc. 2011, 133, 3320–3323

    [20] Jonathan J. Scragg, Tove Ericson, Tomas Kubart, Marika Edoff, and Charlotte Platzer-Bj€orkman, Chemical Insights into the Instability of Cu2ZnSnS4 Films during Annealing, Chem. Mater. 2011, 23, 4625–4633

    [21] Miguel A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D. L. Young, B. Egaas and R. Noufi, Diode Characteristics in State-of-the-Art ZnO/CdS/Cu(In1-xGax)Se2 Solar Cells, Prog. Photovolt: Res. Appl. 2005; 13:209–216

    [22] S. Nishiwaki, N. Kohara, T. Negami, and T. Wada, Jpn. J. Appl. Phys., Part 2 37, L71 (1998).

    [23] B. Shin, Y. Zhu, N. A. Bojarczuk, S. J. Chey, and S. Guha, Appl. Phys.
    Lett. 101, 053903 (2012).

    [24] X. Zhu, Z. Zhou, Y. Wang, L. Zhang, A. Li, and F. Huang, Sol. Energy
    Mater. Sol. Cells 101, 57 (2012).

    [25] J.S. Seoul, S.Y. Lee, J.C. Lee, H.D. Nam, K.H. Kim, Sol. Energy Mater. Sol. Cells 75 (2003), 155-162.

    [26] Honxia Wang, Progress in Thin Film Solar Cells Based on Cu2ZnSnS4, International Journal of Photo energy, Volume 2011 Article ID 801292, doi:10.1155/2011/801292

    [27] David B. Mitzi, Oki Gunawan, Teodor K. Todorov, Kejia Wang, Supratik Guha,The path towards a high-performance solution-processed kesterite solar cell, Solar Energy material & Solar Cells 95(2011)1421-2436

    [28] Alex Redinger, Dominik M.Berg, Phillip J. Dale,and Susanne Siebentritt, The Consequences of Kesterite Equilibra for Efficient Solar Cells, JACS 2011,133 3320-3323

    [29] Shin B, Zhu Y, Bojarczuk NA, Chey SJ, Guha S. Control of an interfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells: 8.9% power conversion efficiency with a TiN diffusion barrier. Applied Physics Letters 2012; 101: 053903-1–053903-4.

    [30] Wätjen JT, Scragg JJ, Ericson T, Edoff M, Platzer-Björkman C. Secondary compound formation revealed by transmission electron microscopy at the Cu2ZnSnS4/Mo interface. Thin Solid Films 2013; 535: 31–34.

    [31] G. Brammertz, M. Buffière, Y. Mevel, Y. Ren, A.E. Zaghi, N. Lenaers, Y. Mols, C. Koeble, J. Vleugels, M. Meuris, J. Poortmans, Correlation between physical, electrical, and optical properties of Cu2ZnSnSe4 based solar cells, Applied Physics Letters, 102 (2013), p. 013902 (013902)

    [32] Ingrid Repins, Carolyn Beall, Nirav Vora, Clay DeHart, Darius Kuciauskas, Pat Dippo, Bobby To, Jonathan Mann, Wan-ching Hsu, Alan Goodrich, Rommel Noufi, Co-evaporated Cu2ZnSnSe4 films and devices, Solar Energy Materials & Solar Cells 101(2012)154-159

    [33] Seung Wook Shin, S.M.Pawar, Chan Young Park, Jae Ho Yun, Jong-Ha Moon, Jin Hyeok Kim, Jeong Yong Lee, Studies on Cu2ZnSnS4(CZTS) absorber layer using different stacking order in precursor films, Solar Energy Materials & Solar Cells 95 (2011) 3202-3206

    [34] Carolin M. Fella, Yaroslav E. Rormanyuk, Ayodhya N. Tiwari, Technological status of Cu2ZnSn(S,Se)4 thin film solar cells, Solar Energy material & Solar Cells 119(2013) 276-277

    [35] Lian Guo, Yu Zhu, Oki Gunawan, Tayfun Gokmen, Vaughn R. Deline, Shafaat Ahmed, Lubomyr T. Romankiw and Hariklia Deligianni, Electrodeposited Cu2ZnSnSe4 thin film solar cell with 7% power conversion efficiency, Prog. Photovolt: Res. Appl. 2014; 22:58–68

    [36] M. Grossberg, J. Krustok, J. Raudoja, K. Timmo, M. Altosaar, T. Raadik, Photoluminescence and Raman study of Cu2ZnSn(SexS1−x)4 monograins for photovoltaic applications,Thin Solid Films 519(2011)7403-7406

    [37] Shin B, Zhu Y, Bojarczuk N, Chey SJ, Guha S. Control of an interfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells: 8.9% power conversion efficiency with a TiN diffusion barrier, Applied Physics Letters 2012.101.5: 053903-053903

    [38] R.C. Sharma and Y.A. Chang, The S-Sn (Sulfur - Tin) System, Bulletin of Alloy Phase Diagrams Vol.7 N0.3 1986 page273

    [39] Chemical Thermodynamics of Selenium, Åke OLIN (Chairman), Bengt NOLÄNG, Evgeniy G. OSADCHII, Lars-Olof ÖHMAN, ERIK ROSÉN

    [40] B.T. Melekh, N.B. Stepanova, T.A. Fomina, and S.A. Semenkovich, Thermodynamic Properties of Compounds in the Tin-Selenium System, Zh. Fiz. Khim. , 45(8), 2018-2020 (1971) in Russian.

    [41] Gurvich, L. V., Veyts, I. V., Alcock, C. B., Thermodynamic Properties of Individual Substances, 4th Ed., Vol. 2: Elements carbon, silicon, germanium, tin, lead, and their compounds , vol. 2, Hemisphere, New York, N. Y., (1991)

    [42] T. W. Chapman, Mater. Sci. Eng. 1 (1966) 65/9

    [43] Feutelais, Y., Majid, M., Legendre, B., Fries, S. G., Phase diagram investigation and proposition of a thermodynamic evaluation of the tin-selenium system, J. Phase Equilib. , 17 , (1996), 40-49

    [44] Katsunori Yamaguchi, Kazuo Kameda, Yoichi Takeda, and Kimio Itagaki, Mesurements of High Temperature Heat Content of theⅡ-Ⅵ and Ⅳ-Ⅵ (Ⅱ: Zn,Cd Ⅳ: Sn,Pb Ⅵ: Se,Te )Compounds, Material Transactions, JIM, Vol.35, N0. 2(1994), pp.118 to 124

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE