簡易檢索 / 詳目顯示

研究生: 陳定憲
Ting-Hsien Chen
論文名稱: 奈米碳管及其高分子複合薄膜於微機電系統應用之研究
The Application of CNTs-polymer composites on MEMS
指導教授: 方維倫
Weileun Fang
徐文光
Wen-Kuang Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 93
中文關鍵詞: 多壁奈米碳管三維奈米碳管圖案奈米碳管高分子複合物微致動器可撓式元件
外文關鍵詞: multi-walled CNTs, 3-D patterns of CNTs, CNTs-polymer composites, micro-actuators, flexible device
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米碳管具有相當多優秀的物理與化學特性,包括很大的剛性、密度僅為鋼材的六分之一、最高的導熱係數以及能比金屬承受更多的電流密度等,因此本文主要目標正是要將奈米碳管整合進微機電系統裡,以期奈米碳管能增進微機電系統的性能與能力。
    本研究主要包含(a)準直性奈米碳管之成長、(b)整合三維奈米碳管圖案於微機電結構、(c)奈米碳管高分子複合薄膜電熱致動器、(d)可撓式奈米碳管場發射元件。準直性奈米碳管成長是整個研究的核心項目,本文藉由此核心研究進ㄧ步的將奈米碳管應用整合進微機電系統。經由量測與分析顯示,本文藉由三維微細加工製程平台,成功的於三維微機電結構上定義出三維的奈米碳管圖案。複合薄膜致動器藉由殘餘應力的影響大小可分為出平面以及同平面致動器,藉由奈米碳管與奈米碳管間電子的傳導,使元件能因焦耳熱而於很低的輸入電流下有大位移的致動。以奈米碳管高分子複合薄膜為基材的可撓式奈米碳管場發射元件,其結構如同ㄧ複合物組成的盒子內裝滿準直性的奈米碳管,且能於相當低的臨界電場下進行電子的場發射。


    摘要 I 致謝 II 目錄 IV 圖目錄 VII 表目錄 XIII 第一章 序論 1 1-1前言 1 1-2 文獻回顧 2 1-2.1 奈米碳管的結構、性質與應用 2 1-2.2 奈米碳管之合成方式 4 1-2.3 奈米碳管之成長機制 6 1-2.4 熱裂解式成長奈米碳管參數的影響 6 1-2.5 奈米碳管於微機電系統之應用 9 1-3研究動機與目標 10 第二章 設計與分析 29 2-1熱裂解式化學氣相成長準直性奈米碳管 29 2-2.1 目的與方法 29 2-1.2 儀器設備 30 2-1.3 奈米碳管成長各調變參數的影響 31 2-2 整合3-D奈米碳管圖案於微機電結構 33 2-3元件I:奈米碳管高分子複合薄膜微致動器 34 2-4元件II:可撓式奈米碳管複合物圖案化場發射器 35 第三章 製程與結果 41 3-1 熱裂解化學氣相成長準直性奈米碳管 41 3-1.1 奈米碳管之成長流程 41 3-1.2 成長奈米碳管各調變參數成長之結果 42 3-2 整合3-D奈米碳管圖案於微機電結構 46 3-3元件I:奈米碳管高分子複合薄膜微致動器 49 3-3.1 奈米碳管高分子複合薄膜致動器之製程與結果 49 3-3.2 高分子於奈米碳管與奈米碳管間隙填充之效果 50 3-4 元件II:可撓式奈米碳管複合物圖案化場發射器 50 第四章 量測與結果 72 4-1準直性奈米碳管之檢測 72 4-2 3-D奈米碳管圖案之檢測 72 4-3 元件I:複合薄膜電熱致動器之測試 73 4-3.1 奈米碳管高分子複合薄膜電性檢測 73 4-3.2 奈米碳管高分子複合薄膜電熱致動器之測試 74 4-4 元件II:可撓式奈米碳管場發射元件之測試 75 第五章 結論與未來工作 86 第六章 參考文獻 88

    [1] R. Feynman, “There’s Plenty of Room at the Bottom” J. Microelectromechanical systems 1, 1, 1992.
    [2] http://www.dlp.com
    [3] http://www.analog.com/en/content/0,2886,764%255F%255F99573,00.html
    [4] S. Iijima, “Helical microtubles of graphitic carbon”, Nature, 354, 56, 1991.
    [5] W. Curtin, B. Sheldon, “CNT-reinforced ceramics and metals”, Materials Today, 7, 44, 2004.
    [6] X. Xie, Y. Mai, X. Zhou, “Dispersion and alignment of carbon nanotubes in polymer matrix: A review”, Materials Science and Engineering R: Reports, 49, 89 2005.
    [7] L. Jin, C. Bower, and O. Zhou, “Alignment of carbon nanotubes in a polymer matrix by mechanical stretching”, Appl. Phys. Lett., 73, 1197, 1998.
    [8] P. Avouris, J. Appenzeller, R. Martel, S. Wind, ”Carbon nanotube electronics”, Proceedings of the IEEE, Nanoelectronics and Nanoscale Precessing, 91, 1772, 2003.
    [9] Y. Lin; J. Appenzeller, Z. Chen; Z. Chen, H. Cheng, P. Avouris,.”High-performance dual-gate carbon nanotube FETs with 40-nm gate length”, IEEE Electron Device Letters, 26, 823, 2005.
    [10] L. Rispal, Y. Stefanov, F. Wessely, U. Schwalke, “Carbon nanotube transistor fabrication assisted by topographical and conductive atomic force microscopy”, Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 45, 3672, 2006.
    [11] R. Bogue, “Nanotechnology: What are the prospects for sensors?”, Sensor Review, 24, 253, 2004.
    [12] A. Maiti, “Sensors based on nanotubes and nanowires - Molecular modeling applications”, Proceedings of SPIE - The International Society for Optical Engineering, 5593, 441, 2004.
    [13] H. Dai, J. Hafner, A. Rinzler, D. T. Colbert, R. E. Smalley, “Nanotubes as nanoprobes in scanning probe microscopy”, Nature 384, 147, 1996.
    [14] M. Ishikawa, M. Yoshimura, K. Ueda, “Simultaneous Measurement of Topography and Contact Current by Contact Mode Atomic Force Microscopy with Carbon Nanotube Probe”, Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 41, 4908, 2002.
    [15] C. Liu, H. Cheng, “Carbon nanotubes for clean energy applications”, Journal of Physics D: Applied Physics, 38, R231, 2005.
    [16]http://www.samsungsdi.com/contents/en/tech/disClass_06_01.html
    [17] R. Baughman, A. Zakhidov, W. Heer, “Carbon Nanotubes—the Route Toward Applications”, Science , 297, 787, 2002.
    [18] D. Qian, G. J. Wagner, W. K. Liu, M.-F. Yu, and R. S. Ruoff, “Mechanics of carbon nanotubes,” Appl. Mech. Rev., 55, 495, 2002.
    [19] W. Guo, C. Zhu, T. Yu, C. Woo, B. Zhang, Y. Dai, “Formation of sp3 Bonding in Nanoindented Carbon Nanotubes and Graphite”, Physical Review Letters, 93, 245502-1, 2004.
    [20] J. Hone, M. Whitney, A. Zettl, “Thermal conductivity of singal-wall carbon nanotubes”, Synthetic Metals, 103, 2498, 1999.
    [21] S. Frank, P. Poncharal, Z. Wang, W. Heer, “Carbon Nanotube Quantum Resistors”, Science, 280, 1744, 1998.
    [22] H. Chu, T. Chang, W. Hsu, W. Fang, “Concrete the Aligned CNT-film”, in Digest Tech. Papers Transducers’05, Conference, Seoul, Korea, 863, 2005.
    [23] W. Fang, H. Chu, W. Hsu, T. Cheng, and N. Tai, “Polymer reinforced aligned multi-walled carbon nanotube composites for MEMS applications,” Advanced Materials, 17, 2987, 2005.
    [24] 朱懷遠, ”DAWN三維矽微加工製程平台及其應用”, 國立清華大學博士論文, 2004.
    [25] A. Yhess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. Lee, S. Kim, A. Rinzler, D. Colbert, G. Scuseria, D. Tomanek, J. Fischer, R. Smalley, “Crystalline Ropes of Metallic Carbon Nanotubes”, Science, 273, 26, 1996.
    [26] M. D. Dresselhaus, G. Dresselhaus, R. Saito, “Physics of carbon nanotubes” Carbon 33, 883 (1995).
    [27] C. N. R. Rao, B. C. Satishkumar, A. Govindaraj, M. Nath, “Nanotubes”, Chemphyschem 2, 78 (2001).
    [28] J. Hone, B. Batlogg, Z. Benes, A. Johnson, J. Fischer, “Quantized phonon spectrum of singal-wall carbon nanotubes”, Science, 289, 1730, 2000.
    [29] J. Hone, M. Whitney, A Zettl, ” Thermal conductivity of single-walled carbon nanotubes”, Synthetic Metals 103, 2498, 1999.
    [30] S. Berer, Y. Kwon, D. Tomanek, “Unusually High Thermal Conductivity of Carbon Nanotubes”, Physical review letters, 84, 4613, 2000.
    [31] T. Anthony, W. Banholzer, J. Fleischer, L. Wei, P. Kuo, R. Thomas, and R. Pryor, “Thermal diffusivity of isotopically enriched 12C diamond”, Phys. Rev. B 42, 1104, 1990.
    [32] Y. Saito, K. Nishikubo, K. Kawabata, T. Matsumoto, “Carbon nanocapsules and single-layered nanotubes produced with platinum-group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge.”, J. Applied Physics, 80, 3062, 1996
    [33] T. Guo, P. Nikolaev, A. Thess, D. Colbert, R. Smalley, “Catalytic growth of single-walled manotubes by laser vaporization”, Chem. Phys. Lett. 243 49, 1995.
    [34] M. Meyyappan, L. Delzeit, A. Cassell1 and D. Hash, “Carbon nanotube growth by PECVD: A review” Plasma Sources Science and Technology, 12, 205 (2003)
    [35] S. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey, “Model of carbon nanotube growth through chemical vapor deposition”, Chem. Phys. Lett. 315, 25, 1999.
    [36] C. Lee, J. Park, “Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition,” Appl. Phys. Lett. 77, 3397, 2000.
    [37] C. Bower, O. Zhou, W. Zhu, D. J. Werder, S. Jin, “Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition,” Appl. Phys. Lett. 77, 2767, 2000.
    [38] P. Mauron, C. Emmenegger, A. Zuttel, C. Nutzenadel, P. Sudan, “Synthesis of oriented nanotube films by chemical vapor deposition”, Carbon 40, 1339, 2002.
    [39] S. Helveg, C. pez-Cartes, J. Sehested, P. Hansen, B. S. Clausen, J. R. Rostrup-Nielsen, F. Abild-Pedersen, J. K. Norskov, “Atomic-scale imaging of carbon nanofibre growth” Nature 427, 426, 2004.
    [40] C. Lee, J. Park, J. Yu, “Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition”, Chem. Phys. Lett. 360, 250, 2001.
    [41] M. Jung, K. Eun, J. Lee, Y. Baik, K. Lee, J. Park, “Growth of carbon nanotubes by chemical vapor deposition”, Diamond and Related Materials, 10, 1235, 2001.
    [42] C. Lee, J. Park, Y. Huh, J. Lee, “Temperature effect on the growth of carbon nanotubes using thermal chemical vapor deposition”, Chem. Phys. Lett. 343, 33, 2001.
    [43] H. Gui, G. Eres, J. Howe, A. Puretkzy, M. Varela, D. Geohegan, D. Lowndes, “Growth behavior of carbon nanotubes on multilayered metal catalyst film in chemical vapor deposition”, Chem. Phys. Lett. 374, 222, 2003.
    [44] M. Jung, K. Eun, Y. Baik, K. Lee, J. Shin, S. Kim, “Effect of NH3 environmental gas on the growth of aligned carbon nanotube in catalystically pyrolizing C2H2”, Thin solid films, 398, 150, 2001.
    [45] G. Shen, Y. Cheng, and L. Tsai, “Synthesis and Characterization of Ni–P-CNT’s Nanocomposite Film for MEMS Applications”, IEEE transactions on nanotechnology, 4, 539, 2005
    [46] S. Miserendino, J. Yoo, A. Cassell, Y. Tai, “Electrochemical characterization of parylene-embedded carbon nanotube nanoelectrode arrays”, Nanotechnology, 17, S23, 2006.
    [47] A. Allen, Andrew Cannon, Jungchul Lee, William P King and Samuel Graham, “Flexible microdevices based on carbon nanotubes,” J. Micromech. Microeng., 16, 2722, 2006.
    [48] A. Allen, Erik Sunden, Andrew Cannon, Samuel Graham,a_ and William King, “Nanomaterial transfer using hot embossing for flexible electronic devices,” Applied PhysicsLetters., 88, 083112, 2006.
    [49] S. Lu and B. Panchapakesan, “Nanotube micro-optomechanical actuators,” Applied PhysicsLetters., 88, 253107, 2006.
    [50] S. Lu, Y. Liu, N. Shao and B. Panchapakesan, “Nanotube micro-opto-mechanical systems,” Nonotechnology, 18, 065501, 2007.
    [51] 蘇旺申, ”電漿處裡技術於奈/微機電系統之應用”, 國立清華大學博士論文, 2006.
    [52] W. Su, M. S. Tsai and W. Fang, “A Three-Dimensional Microfabrication Technology on Highly Structured Surfaces” Electrochemical and Solid-State Letters, 10, H16-H19, 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE