簡易檢索 / 詳目顯示

研究生: 胡郁盈
Yu-Ying Hu
論文名稱: 非平衡磁控濺鍍製備之奈米晶氮氧化鋯薄膜相轉換與性質研究
Phase Transition and Related Properties of Nanocrystalline Zr(N,O) Thin Films by Unbalanced Magnetron Sputtering
指導教授: 黃嘉宏
Jia-Hong Huang
喻冀平
Ge-Ping Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 126
中文關鍵詞: 氮氧化鋯相轉換性質非平衡磁控濺鍍
外文關鍵詞: Zr(N,O), Phase Transition, Properties, Unbalanced Magnetron Sputtering
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用通入氮氣及氧氣等反應氣體之非平衡磁控濺鍍系統,於P型(100)矽晶片上製備氮氧化鋯奈米晶薄膜。在最佳化的氮化物製程中導入不同的氧流量,用以鍍著氮氧化鋯薄膜。本研究的目的在探討薄膜經由改變氧氣流量而產生的相轉換,以及與其相關的結構和性質之變化。藉由X光光電子儀 (XPS) 的測定得知,當氧氣流量增加時,薄膜當中的氧含量明顯地上升。透過X光繞射譜圖 (XRD) 的觀察則發現,伴隨著氧含量的增加,薄膜的主要相出現之順序為:面心立方晶之氮化鋯,立方晶之氮氧化鋯(Zr2ON2),正方晶之二氧化鋯,最後是單斜晶之二氧化鋯。根據薄膜的特徵可將所有的試片分類為三區,其中各區則分別由氮化鋯(zone I),氮氧化鋯(zone II),及二氧化鋯(zone III)主導。薄膜的性質,包括電阻率,機械性質與光學性質,大體上皆受到薄膜本身氧含量以及各區主要相的影響。
    利用X光繞射之改良式 sin2ψ的方法可個別量測氮化鋯、正方晶與單斜晶之二氧化鋯的殘餘應力。其中,氮化鋯的殘餘應力隨著氧含量上升而得到釋放。正方晶之二氧化鋯中的高殘餘應力則可以歸因於填隙型陰離子之嵌入所造成的晶格扭曲。而氮氧化鋯(Zr2ON2) 和單斜晶之二氧化鋯則為低應力相,並且有釋放薄膜整體應力的可能。實驗結果指出,位於c軸之八面體間隙位置的氮可以使正方晶之二氧化鋯結構在室溫下得到穩定。而在二氧化鋯中,氮含量的增加則會使得薄膜折射率上升,能隙縮小,以及顏色由檸檬綠轉變成粉紅色。


    Nanocrystalline Zr(N,O) thin films were deposited on P-type (100) Si wafers using unbalanced magnetron sputtering (UBMS) system with reactive gases consisting of nitrogen and oxygen. Oxygen with different flow rate was introduced into the optimized nitride-deposited process to deposit the Zr(N,O) thin films. The purpose of this study was to investigate the phase transition due to changing oxygen flow rate and the variation of related structure and properties of the thin films. As the oxygen flow rate increases, the oxygen content of films determined using X-ray Photoelectron Spectroscopy (XPS) increased significantly. The major phases observed from X-ray Diffraction (XRD) were in an order of fcc-ZrN, c-Zr2ON2, t-ZrO2 and m-ZrO2 with increasing oxygen content. The characteristics of the films could be categorized into three zones respectively predominated by ZrN (zone I), Zr2ON2 (zone II) and ZrO2 (zone III). The properties of the films including electrical resistivity, mechanical and optical properties were substantially affected by the oxygen content in the film and the predominant phase in the three zones. The residual stresses of ZrN, t-ZrO2 and m-ZrO2 phases were measured separately using XRD modified sin2ψ method. The residual stress in ZrN was relieved with increasing oxygen content. High residual stress in the t-ZrO2 may be ascribed to the lattice distortion due to the insertion of excess interstitial anions. Zr2ON2 and m-ZrO2 were found to be low stress phases, and might relieve the residual stress of the films. Experimental results indicated that t-ZrO2 could be stabilized at room temperature by the nitrogen interstitials in the octahedral sites along the c-axis. The increase of nitrogen content in ZrO2 phase resulted in the increase of refractive index, the decrease of band gap and the varying color from lemon green to pink.

    謝誌 i 摘要 iii Abstract iv Contents v List of Figures viii List of Tables x Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Characteristics of Zr(N,O) Thin Films 3 2.1.1 Zirconium Nitrides 4 2.1.2 Zirconium Dioxides 4 2.1.3 Zirconium oxynitrides 6 2.2 Deposition Method (UBMS) 15 2.3 Effect of Oxygen Content on the Characteristics of TMe(N,O) films 15 2.3.1 Hardness 16 2.3.2 Residual stress 16 2.3.3 Refractive index 17 2.3.4 Color 17 2.3.5 Electric resistivity 18 Chapter 3 Experimental Details 19 3.1 Specimen Preparation and Deposition Process for Zr(N,O) thin films 19 3.2 Characterization Methods 23 3.2.1 X-ray Photoelectron Spectroscopy (XPS) 23 3.2.2 Rutherford Backscattering Spectroscopy (RBS) 24 3.2.3 Auger Electron Spectroscopy (AES) 24 3.2.4 Field-Emission Gun Scanning Electron Microscopy (FE-SEM) 25 3.2.5 X-ray Diffraction and Glancing Incidence X-ray Diffraction (XRD and GIXRD) 25 3.3 Properties Measurement 27 3.3.1 Mechanical Properties 27 3.3.1.1 Hardness and Young’s modulus 27 3.3.1.2 Residual Stress 28 3.3.1.2.1 Optical Method 28 3.3.1.2.2 XRD modified sin2ψ Method 28 3.3.1.3 Surface Roughness 29 3.3.2 Optical properties 29 3.3.2.1 Color (L*a*b*) and Reflectance 30 3.3.2.2 Refractive index 30 3.3.3 Electrical Resistivity 30 Chapter 4 Results 33 4.1 Chemical Compositions 33 4.1.1 XPS 33 4.1.2 RBS 35 4.2 Microstructure 45 4.2.1 SEM 45 4.2.2 θ/2θ XRD 50 4.2.3 GIXRD 56 4.3 Properties 61 4.3.1 Mechanical Properties 61 4.3.1.1 Hardness and Young’s modulus 61 4.3.1.2 Residual Stress 65 4.3.1.3 Packing density 69 4.3.1.4 Surface Roughness 71 4.3.2 Optical Properties 73 4.3.2.1 Color and Reflectance 73 4.3.2.2 Refractive index 79 4.3.3 Electrical Resistivity 82 Chapter 5 Discussion 84 5.1 Phase Transformation and Phase Separation 85 5.1.1 Zone I 85 5.1.2 Zone II 86 5.1.3 Zone III 87 5.1.4 Summary 88 5.2 Residual Stress 92 5.2.1 Zone I 92 5.2.2 Zone II 92 5.2.3 Zone III 93 5.3 The Mechanisms of Formation 94 5.3.1 S013 (ZrN + m-ZrO2→ ZrN + m-ZrO2 + t-ZrO2) 94 5.3.2 S025, S038, and S050 (ZrN + Zr2ON2 + m-ZrO2→Zr2ON2 + ZrN + t-ZrO2) 95 Chapter 6 Conclusions 101 References 102 Appendix A XPS deconvolution 111 Appendix B Surface morphology 121 Appendix C Reflectance 123 Appendix D Photoluminescence 125

    1 U.K. Wiiala, I.M. Penttinen, A.S. Korhonen, Surf. Coat. Technol., 41 (1990) 191.
    2 H. Holleck, J. Vac. Sci. Technol., A 4 (1986) 2661.
    3 W.D. Sproul, Thin Solid Films, 107 (1983) 141.
    4 B. Navinsek, P. Panjan, I. Milosev, Surf. Coat. Technol., 97 (1997) 182.
    5 H.K. Pulker, Coatings on Glass, in: G. Siddall (Eds.), Thin Films Science and Technology, Vol. 6, Elsevier, Amsterdam, 1984.
    6 H. Bach, N. Neuroth, The Properties of Optical Glass, Springer, Heidelberg, 1995.
    7 K. Vydianathan, G. Nuesca, G. Peterson, E.T. Eisenbraun, A.E. Kaloyeros, J. Mater. Res., 16 (2001) 1838.
    8 G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys., 87 (2000) 484.
    9 W.J. Qi, R. Nieh, B.H. Lee, L.G. Kang, Y. Jeon, J.C. Lee, Appl. Phys. Lett., 77 (2000) 3269.
    10 J.P. Chang, Y.S. Lin, Appl. Phys. Lett., 79 (2001) 3666.
    11 C. Chaneliere, J.L. Autran, R.A.B. Devine, B. Balland, Mater. Sci. Eng., R 22 (1998) 269.
    12 J.M. Chappe, N. Martin, G. Terwagne, J. Lintymer, J. Gavoille, J. Takadoum, Thin Solid Films, 440 (2003) 66.
    13 F. Vaz, P. Cerqueira, L. Rebouta, S.M.C. Nascimento, E. Alves, Ph. Goudeau, J.P. Riviere, Suf. Coat. Technol., 174 (2003) 197.
    14 F. Vaz, P. Cerqueira, L. Rebouta, S.M.C. Nascimento, E. Alves, Ph. Goudeau, J.P. Riviere, K. Psichow, J. de Rijk, Thin Solid Films, 447 (2004) 449.
    15 S.H. Mohamed, O. Kappertz, J.M. Ngaruiya, T. Niemeier, R. Drese, R. Detemple, M.M. Wakkad, M. Wuttig, Phys. Status Solidi., A Appl. Res., 201 (2004) 90.
    16 S. Venkataraj, O. Kappertz, R. Jayavel, M. Wuttig, J. Appl. Phys., 92 (2002) 2461.
    17 J.D. Loftin, R.D. Clark, AK Hochberg, Process of CVD of Hf and Zr containing oxynitride films, US Patent 6844271, 2005.
    18 S. Jeon, C.J. Choi, T.Y. Seong, H. Hwang, Appl. Phys. Lett., 79 (2001) 245.
    19 S.H. Chiu, Synthesis and Characterization of Nano-crystalline TiNxOy Thin Films by Unbalanced Magnetron Sputtering System (UBMS), Master Thesis, National Tsing Hua University, Taiwan, R.O.C., 2006.
    20 J.H. Huang, K.H. Chang, G.P. Yu, Surf. Coat. Technol., 201 (2007) 6404.
    21 Z.E. Tsai, Effect of Oxygen Flow Rate on the Structure and Properties of Nanocrystalline Zr(N,O) Thin Film, Master Thesis, National Tsing Hua University, Taiwan, R.O.C., 2005.
    22 K.C. Lan, Study of Nano-crystalline Zr(N,O) Thin Films on Si Substrate by Ion-Plating, Master Thesis, National Tsing Hua University, Taiwan, R.O.C., 2007.
    23 T.H. Wu, Heat Treatment Induced Phase Separation and Phase Transformation of Zr(N,O) Thin Films Deposited by Ion-Plating, Master Thesis, National Tsing Hua University, Taiwan, R.O.C., 2007.
    24 M.A. Signore, A. Rizzo, L. Mirenghi, M.A. Tagliente, A. Cappello, Thin Solid Films, 515 (2007) 6798.
    25 L. Cunha, F. Vaz, C. Moura, L. Rebouta, P. Carvalho, E. Alves, A. Cavaleiro, Ph. Goudeau, J.P. Riviere, Surf. Coat. Technol., 200 (2006) 2917.
    26 F. Vaz, P. Carvalho, L. Cunha, L. Rebouta, C. Moura, E. Alves, A.R. Ramos, A. Cavaleiro, Ph. Goudeau, J.P. Riviere, Thin Solid Films, 469 (2004) 11.
    27 P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C. J. Tavares, C. Moura, E. Alves, A. Cavaleiro, Ph. Goudeau, E. Le Bourhis, J.P. Rivière, J.F. Pierson, O. Banakh, J. Appl. Phys., 98 (2005) 023715.
    28 S.C. Ferreira, E. Ariza, L.A. Rocha, J.R. Gomes, P. Carvalho, F. Vaz, A.C. Fernandes, L. Rebouta, L. Cunha, E. Alves, Ph. Goudeau, J.P. Riviere, Surf. Coat. Technol., 200 (2006) 6634.
    29 P. Carvalho, F. Vaz, L. Rebouta, S. Carvalho, L. Cunha, Ph. Goudeau, J.P. Riviere, E. Alves, A. Cavaleiro, Surf. Coat. Technol., 200 (2005) 748.
    30 R. Fraunchy, Surf. Sci. Rep., 38 (2000) 195.
    31 Y.S. Lai, C.H. Lu, L.M. Chen, J.S. Chen, J. Electrochem. Soc., 152 (2005) 146.
    32 D.I. Bazhanov, A.A. Knizhnik, A.A. Safonov, A.A. Bagatur’yants, M.W. Stoker, A.A. Korkin, J. Appl. Phys., 97 (2005) 044108.
    33 M. Lerch, E. Fueglein, J. Wrba, Z. Anorg., Allg. Chem., 622 (1996) 367.
    34 W.H. Baur, M. Lerch, Z. Anorg. Allg. Chem., 622 (1996) 1729.
    35 M. Lerch, J. Am. Ceram. Soc., 79 (1996) 2641.
    36 M. Lerch, F. Krumeich, R. Hock, Solid State Ionics, 95 (1997) 87.
    37 M. Lerch, O. Rahauser, J. Mater. Sci., 32 (1997) 1357.
    38 M. Lerch, J. Mater. Sci. Lett., 17 (1998) 441.
    39 A.T. Tham, C. Rodel, M. Lerch, D. Wang, D.S. Su, A. Klein-Hoffmann, R. Schlogl, Cryst. Res. Technol., 39 (2004) 421.
    40 S.J. Clarke, C.W. Michie, M.J. Rosseinsky, J. Solid State Chem., 146 (1999) 399.
    41 N. Martin, O. Banakh, A.M.E. Santo, S. Springer, R. Sanjines, J. Takadoum, F. Levy, Appl. Surf. Sci., 185 (2001) 123.
    42 C. Rousselot, N. Martin, Surf. Coat. Technol., 142 (2001) 206.
    43 N. Martin, R. Sanjines, J. Takadium, F. Levy, Surf. Coat. Technol., 142 (2001) 615.
    44 J.M. Chappe, N. Martin, G. Terwagne, J. Lintymer, J. Gavoille, J. Takadoum, Thin Solid Films, 440 (2003) 66.
    45 S. Venkataraj, D. Severin, S.H. Mohamed, J. Ngaruiya , O. Kappertz, M. Wuttig, Thin Solid Films, 502 (2006) 228.
    46 S. Venkataraj, H. Kittur, R. Drese, M. Wutt, Thin Solid Films, 514 (2006) 1.
    47 S.H. Mohamed, A.M. Abd El-Rahman, Mahrous R Ahmed, J. Phys. D: Appl. Phys., 40 (2007) 7057.
    48 T. Mishima, M. Matsuda, M. Miyake, Appl. Catal. A: General, 324 (2007) 77.
    49 L.V. Leaven, M.N. Alias, R. Brown, Surf. Coat. Technol., 53 (1992) 25.
    50 P. Panjan, B. Navinsek, A. Zabkar, Dj. Mandrino, J. Fiser, Thin Solid Films, 228 (1993) 233.
    51 P.C. Johnson, H. Randhawa, Surf. Coat. Technol., 33 (1987) 53.
    52 E. Kelesoglu, C. Mitterer, M.K. Kazmanli, M. Urgen, Surf. Coat. Technol., 116-119 (1999) 133.
    53 E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schussler, Surf. Coat. Technol., 112 (1999) 133.
    54 E. Ryshkewitz, D.W. Richardson, Oxide Ceramics: Physical Chemistry and Technology, General Ceramics, Haskell, NJ, 1985.
    55 S. Meriani, Zirconia’88, Advances in Zirconia Science and Technology, Elsevier, New York, 1989.
    56 A. Hidaka, J. Nakamura, J. Sugimoto, Nuclear Engrg. and Design, 168 (1997) 361.
    57 F. Cernuschi, S. Ahmaniemi, P. Vuoristo, T. Mantyla, J. Eur. Ceram. Soc., 24 (2004) 2657.
    58 S. Venkataraj, O. Kappertz, H. Weis, R. Drese, R.Jeyavel, M. Wutting, J Appl. Phys., 92 (2002) 3599.
    59 Z.W. Zhao, B.K. Tay, G.Q. Yu, S.P. Lau, J. Phys.: Condens. Matter, 15 (2003) 7707.
    60 S. Venkataraj, O. Kappertz, C. Liesch, R. Detemple, R. Jayavel, M. Wutting, Vacuum, 75 (2004) 7.
    61 X.J. Chen, K.A. Khor, S.H. Chan, L.G. Yu, Mater. Sci. Eng., 335 (2002) 246.
    62 C.S. Hwang, H.J. Kim, J. Mater. Res., 8 (1993) 6.
    63 W.J. Chou, Processing and Properties of Metal Nitride Thin Films Deposited by PVD Methods, Ph. D Thesis, National Tsing Hua University, Taiwan, R.O.C., 2003.
    64 H.M. Tung, Effect of Bias and heat treatment on the microstructure and properties of ZrN film deposited by filter cathodic arc ion-plating, Master Thesis, National Tsing Hua University, Taiwan, R.O.C., 2004.
    65 I. Milosev, H.H. Strehblow, M. Gaberscek, B. Navinsek, Surf. and Interf. Anal., 24 (1996) 448.
    66 W.J. Chou, G.P. Yu, J.H. Huang, Suf. Coat. Technol., 149 (2002) 7.
    67 A.H. Heuer, M. Ruhle, Phase Transformation in ZrO2 containing ceramics, American Ceramic Society, 1984.
    68 J.P. Abriata, R. Versaci, J. Garces, Bull. Alloy Phase Diagrams, 7 (1986) 116.
    69 F.C. Nonamaker, Chem. Met. Eng., 31 (1924) 151-5.
    70 S. Schmauder, H. Schubert, J. Am. Ceram. Sco., 69 (1986) 534.
    71 T. Sato1, S. Ohtaki1 and M. Shimada1, J. Mater. Sci., 20 (1985) 1466.
    72 R.C. Garvie, R.H.J. Hannink, R.T. Pascoe, Nature (London), 258 (1975) 703.
    73 S. Block, J.A.H. Dajornada, G.J. Piermarini, J. Am. Ceram. Soc., 68 (1985) 497.
    74 E.D. Witney, J. Electrochem. Soc., 112 (1965) 91.
    75 B. Benali, M. Herbst Ghysel, I. Gallet, A.M. Huntz, M. Andrieux, Appl. Surf. Sci., 253 (2006) 1222.
    76 Y.M. Chiang, D.P. Birnie III, W.D. Kingery, Physical Ceramics, John Wiley & Sons, Inc., New York, 1997, pp.488-490.
    77 V.S. Stubican, J. R. Hellman, Advances in Ceramics in: A.H. Heuer, L.W. Hobbs (Eds) Science and Technology of Zirconia, Vol. 3, American Ceramic Society, Columbus Ohio, 1981, pp.25-36.
    78 D.L. Porter, A.H. Heuer, J. Am. Cer. Soc., 62 (1979) 298.
    79 K. Maca, H. Hadraba, J. Cihlar, Ceram. Int., 30 (2004) 843.
    80 E.E. Podkletnov, I.P. Shepilov, D.A. Ivanov, G.A. Fomina, Refractories and Industrial Ceramics, 26 (1985) 476.
    81 A. Emeline, G.V. Kataeva, A.S. Litke, A.V. Rudakova, V.K. Ryabchuk, N. Serpone, Langmuir, 14 (1998) 5011.
    82 B. Karlik, E.K. Chang, S.G. Louie, Phys. Rev. B, 57 (1998) 7027.
    83 D.S. Lee, H.J. Choi, H.J. Sim, D.H. Choi, H.S. Hwang, M.J. Lee, S.A. Seo, I.K. Yoo, IEEE Electron Device Lett., 26 (2005) 719.
    84 W.H. Lowdermik, D. Milam, F. Rainer, Thin Solid Films, 73 (1980)155.
    85 W.T. Pawlewicz, D.D. Hays, P.M. Martin, Thin Solid Films, 73 (1980) 169.
    86 K.V.S.R. Appara, N.K. Shaoo, T.C. Bagchi, Thin Solid Films, 129 (1985) 71.
    87 V.M.M. Mercier,P. Van der Sluis, Solid State Ionics, 145 (2001) 17.
    88 X. Zhao, D. Vanderbilt, Phys. Rev. B, 65 (2002) 075105.
    89 X. Zhao, D. Ceresoli, D. Vanderbilt, Phys. Rev. B, 71 (2005) 085107.
    90 H.J. Cho, Y.D. Kim, D.S. Park, E. Lee, C.H. Park, J.S. Jang, K.B. Lee, H.W. Kim, S. J. Chae, Y.J. Ki, I.K. Han, Y.W. Song, ESSDERC, 2006, pp.146.
    91 Y.K. Park, S.H. Lee, J.W. Lee, J.Y. Lee, S.H. Han, E.C. Lee, S.Y. Kim, J. Han, J.H. Sung, Y.J. Cho, J.Y. Jun, D.J. Lee, K.H. Kim, D.K. Kim, S.C. Yang, B.Y. Song, Y.S. Sung, H.S. Byun, W.S. Yang, K.H. Lee, S.H. Park, C.S. Hwang, T.Y. Chung, W.S. Lee, Symp. on VLSI Tech., 2007, pp.190.
    92 J. Zhu, T.L. Li, B. Pan, L. Zhou, Z.G. Liu, J. Phys. D: Appl. Phys., 36 (2003) 389.
    93 X. Wu, P. Zhou, J. Li, L.Y. Chen, H.B. Lv, Y.Y. Lin, T.A. Tang, Appl. Phys. Lett., 90 (2007) 183507.
    94 W. Guan, S. Long, R. Jia, M. Liu, Appl. Phys. Lett., 91 (2007) 062111.
    95 C.Y. Lin, C.Y. Wu, C.Y. Wu, IEEE Electron Device Lett., 28 (2007) 366.
    96 M. Copel, M.A. Gribelyuk, E. Gusev, Appl. Phys. Lett., 76 (2000) 436.
    97 S.W. Nam, J.H. Yoo, H.Y. Kim, S.K. Kang, D.H. Ko, C.W. Yang, H.J. Lee, M.H. Cho, J.H. Ku, J. Vac. Sci. Technol., A 19 (2001) 1720.
    98 T.S. Jeon, J.M. White, D.L. Kwong, Appl. Phys. Lett., 78 (2001) 368.
    99 J.C. Gilles, Bull. Soc. Chim. Fr., 22 (1962) 2118.
    100 R. Collongues, J.C. Gilles, A.M. Lejus, M. Perez, Y. Jorba, D. Michel, Mater. Res. Bull., 2 (1967) 837.
    101 Y.B. Cheng, D.P. Thompson, J. Am. Ceram. Soc., 74 (1991) 1135.
    102 Y.B. Cheng, D.P. Thompson, J. Am. Ceram. Soc., 76 (1993) 683.
    103 R.B. Von dreele, L. Eyring, A.L. Bowman, J.L. Yarnell, Acta. Cryst., B 31 (1975) 971.
    104 M.R. Thornber, D.J.M. Bevan, J. Graham, Acta. Cryst., B 24 (1968) 1183.
    105 J. Wendel, M. Lerch, W. Laqua, J. Solid State Chem., 142 (1999) 163.
    106 M. Ohashi, H. Yamamoto, S. Yamanaka, M. Hattori, Mater. Res. Bull., 28 (1993) 513.
    107 M. Lerch, J. Mater. Sci. Lett., 17 (1998) 441.
    108 D.P. Thompson, Proc. 2nd ECRS Conf., Augsburg, 1991, pp.35.
    109 A.J. Perry, Thin Solid Films, 193 (1990) 463.
    110 JCPDS file 35-0753.
    111 J.E. Hove, W.C. Riley, Modern Ceramics: Some Principles and Concepts, John Wiley & Sons, Inc., CA, 1965, pp.352.
    112 L.E. Toth, Transition Metal Carbides and Nitrides, Academic press, New York, 1971, pp. 188.
    113 J.H. Huang, K.W. Lau, G.P. Yu, Surf. Coat. Technol., 191 (2005) 17.
    114 A.J. Perry, Vficlav Valvoda, David Rafaja, Thin Solid Films, 214 (1992) 169.
    115 E. Törok, A.J. Perry, L. Chollet, W.D. Sproul, Thin Solid Films, 153 (1987) 37.
    116 P. Jin, S. Maruno, Jpn. J. Appl. Phys., 30 (1991) 1463.
    117 E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schussler, Surf. Coat. Technol., 112 (1999) 133.
    118 JCPDS file 83-0944.
    119 JCPDS file 89-7710.
    120 JCPDS file 89-9069.
    121 W.A. Roth, B. Becher, Z. Physik. Chem., 145 A (1929) 461.
    122 O. Ruff, F. Ebert, Z. Anorg. Allgem. Chem., 180 (1929) 19.
    123 L. Passerini, Gazz. Chim. Ital., 60 (1930) 672.
    124 B. Hatton, P.S. Nicholson, J. Am. Ceram. Soc., 84 (2001) 571.
    125 James F. Shackelford, CRC Materials Science and Engineering Handbook, 2nd ed., CRC Press, 1994.
    126 Oswald Kubaschewski, C.B. Alcock, Zirconium: Physico-chemical Properties of Its Compounds and Alloys, International Atomic Energy Agency, 1976.
    127 S.M. Rossnagel, Sputter Deposition, Opportunities for Innovation, in: W.D. Sproul, L.O. Legg (Eds.), Advanced Surface Engineering, Techonic Publishing Co., Switzerland, 1995.
    128 B. Windows, N. Savvides, J. Vac. Sci. Technol., A 4 (1986) 196.
    129 D.G. Teer, Trans. Nonferrous Met. Soc. China, 14 (2004) 42.
    130 P.J. Kelly, R.D. Arnell, Vacuum, 56 (2000) 159.
    131 Y. Makino, M. Nose, T. Tanaka, M. Misawa, A. Tanimoto, T. Nakai, K. Kato, K. Nogi, Surf. Coat. Technol., 98 (1998) 934.
    132 D. Pilloud, A.S. Dehlinger, J.F. Pierson, A. Roman, L. Pichon, Surf. Coat. Technol., 174-175 (2003) 338.
    133 T.S. Moss, Proc. Phys. Soc., London, Sect. B 63 (1950) 167.
    134 D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, B. Samset, Thin Solid Films, 371 (2000) 218.
    135 E. Khawaja, F. Bouamrane, F. Al-Adel, A.B. Hallak, M.A. Daous, M.A. Salim, Thin Solid Films, 240 (1994) 121.
    136 C. Kittel, Introduction to Solid State Physics, 4th ed., John Wiley & Sons, Inc., New York, 1971, pp.146.
    137 S. Niyomsoan, W. Grant, D.L. Olson, B. Mishra, Thin Solid Films, 415 (2002) 187.
    138 M.J. Jung, K.H. Nam, Y.M. Chung, J.H. Boo, J.G. Han, Surf. Coat. Technol., 171 (2002) 71.
    139 D. Briggs, M.P. Seah, Practical Surface Analysis by AES and XPS, John Wiley & Sons, Inc., Chichester, 1983.
    140 J. Chastain, J.F. Moulder, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics Division, Perkin-Elmer Corp, 1992.
    141 P. Scherrer, Gott. Nachr, 2 (1918) 98.
    142 L.V. Azaroff, M.J. Buerger, The Powder Method in X-Ray Crystallography, McGraw-Hill, New York, 1958, pp.233.
    143 W.C. Oliver, G.M. Pharr, J. Mater. Res., 7 (1992) 1564.
    144 G.G. Stoney, Proc. R. Soc. Lond, A 82 (1909) 17.
    145 W. Zhang, Y.L. Yao, I.C. Noyan, J. Manuf. Sci. Eng., 126 (2004) 10.
    146 C.H. Ma, J.H. Huang, Haydn Chen, Thin Solid Films, 418 (2002) 73.
    147 American Society for Testing Materials, Symposium on Color, ASTM, Philadelphia, 1941, pp.3.
    148 JCPDS file 89-8345.
    149 R.A. Dugdale, J. Mater. Sci., 1 (1996) 160.
    150 M. Del Re, R. Gouttebaron, J.P. Dauchot, P. Leclere, G. Terwagne, M. Hecq, Surf. Coat. Technol., 174 (2003) 240.
    151 M. Matsuoka, S. Isotani, W. Sucasaire, N. Kuratani, K. Ogata, Surf. Coat. Technol., doi: 10.1016/j.surfcoat.2007.11.019.
    152 H. Wiame, M.A. Centeno, S. Picard, P. Bastians, P. Grange, J. Europ. Ceram. Soc., 18 (1998) 1293.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE