簡易檢索 / 詳目顯示

研究生: 洪昇邦
論文名稱: X光自由電子雷射的光注射器設計
Design of a Photoinjector for X-ray Free Electron Laser
指導教授: 施宙聰
劉偉強
口試委員: 張存續
施宙聰
劉偉強
李安平
學位類別: 碩士
Master
系所名稱: 理學院 - 先進光源科技學位學程
Degree Program of Science and Technology of Synchrotron Light Source
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 86
中文關鍵詞: 光陰極注射器發射度控制速度群聚
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • X光自由電子雷射擁有同調、高時序解析、可調頻、極高亮度等優良特性,為最重要的加速器光源之一。
    X光自由電子雷射系統中最主要的關鍵技術之一是光注射器的設計。唯有注射高品質的電子束,才能使自由電子雷射成功運作。本研究從理論出發,以電腦模擬驗證,以國家同步輻射中心之光陰極注射器為主要研究對象來探討影響發射度的各種參數。並依我們現有的儀器能力找尋最佳化的操作點,產生規一化亮度在10^14 A/m^2以上之電子束,做X光自由電子雷射及其他新型光源研究之用。
    除了發射度控制之外,在本文中亦討論電子束的壓縮技術,模擬電子束經兩種常見的方法壓縮之後特性的變化,除了能大幅提高電子束峰電流,也追求短脈衝電子束的其他應用。


    目錄 摘要……………………………………………………………………………………i 目錄…………………………………………………………………………………ii 表目錄………………………………………………………………………………iv 圖目錄………………………………………………………………………………iv 第一章 簡介…………………………………………………………………………1 1.1 高亮度電子注射器與X光自由電子雷射………………………………1 1.2 論文回顧…………………………………………………………………2 1.2.1. 光陰極電子槍發展………………………………………………2 1.2.2. 光陰極電子槍理論………………………………………………3 1.2.3. 雷射塑形……………………………………………………………3 1.2.4. LCLS光陰極注射器成功運轉…………………………………3 1.3 研究目的……………………………………………………………………4 第二章 光注射器理論………………………………………………………………6 2.1 微波加速與相空間的影響…………………………………………………6 2.2 空間電荷力的影響………………………………………………………11 2.3 發射度補償原理…………………………………………………………14 2.4 包絡分析及Ferrario工作點……………………………………………16 2.5 速度群聚效應……………………………………………………………18 第三章 模擬軟體與元件模型……………………………………………………24 3.1 模擬軟體介紹……………………………………………………………24 3.2 各項元件模型建立………………………………………………………24 iii 第四章 自由空間中的電子束運動………………………………………………29 4.1 模擬步驟、影響參數的整理………………………………………………29 4.2 發射度優化………………………………………………………………30 4.2.1. 注射角度與補償磁鐵磁場的影響……………………………30 4.2.2. 電子束橫向與縱向形狀的影響………………………………34 4.2.3. 電子束橫向寬度與縱向長度的影響…………………………37 4.2.4. 電子槍腔場與帶電量的影響…………………………………40 4.3 指向穩定性測試…………………………………………………………42 4.4 網格收斂性測試…………………………………………………………43 第五章 加入線型加速器與電子束壓縮技術……………………………………45 5.1 線型加速器操作在峰值…………………………………………………45 5.1.1. 不同加速梯度下的表現……………………………………………48 5.1.2. 包覆聚焦磁鐵………………………………………………………50 5.1.3. 加上磁壓縮器與後端加速的表現…………………………………54 5.2 線型加速器操作在零交點………………………………………………55 5.2.1. 低電場梯度與低電荷電子槍特性…………………………………56 5.2.2. 維持發射度的壓縮條件……………………………………………58 5.2.3. 稍微犧牲發射度的壓縮條件………………………………………61 第六章 結論與討論………………………………………………………………65 附錄A. 發射度的定義與種類……………………………………………………66 附錄B. 橫向發射度量測方法……………………………………………………68 附錄C. 包絡方程式推導…………………………………………………………71 附錄D. Parmela輸入檔節錄……………………………………………………76 附錄E. Elegant輸入檔節錄………………………………………………………79

    參考文獻
    [1] K. Batchelor et al., ”Development of a high brightness electron gun for the accelerator test facility at Brookhaven national laboratory”, European Particle Accelerator Conference, Rome, Italy, June 7-12, 1988.
    [2] D. T. Palmer et al., ” Microwave Measurements and Beam Dynamics Simulations of the BNL/SLAC/UCLA Emittance Compensated 1.6 Cell Photocathode RF Gun”, 1995 Particle Accelerator Conference, Vol. 979, 1996, Dallas, TX.
    [3] J. B. Rosenzweig, ” The High Brightness Electron Beam Physics and Photoinjector”, International Committee for Future Accelerators 2008.
    [4] K. J. Kim, ”RF and space-charge effects in laser-driven RF electron guns”, Nuclear Instruments and Methods in Physics Research A 275(1989) 201-218.
    [5] B. E. Carlsten, ”New photoelectric injector design for the Los Alamos National Laboratory XUV FEL accelerator”, Nuclear Instruments and Methods in Physics Research A285(1989) 313-319.
    [6] L. Serafini, J. B. Rosenzweig, ”Envelope analysis of intense relativistic quasilaminar beams in rf photoinjectors: A theory of emittance compensation”, Physical review E Volume 55, Number 6, June 1997.
    [7] M. Ferrario et al., ”HOMDYM study for the LCLS RF photo-injector”, 2nd ICFA Advanced Accelerator Workshop on The Physics of High Brightness Beams, 11/9/1999—11/12/1999, Los Angeles, CA, USA.
    [8] J. Yang et al., ” Experimental studies of photocathode rf gun with laser pulse shaping”, EPAC 2002, Paris, France.
    [9] R. Akre et al., ” Commissioning the Linac Coherent Light Source injector”, physical review special topics - accelerators and beams 11, 030703 2008.
    [10] N. Y. Huang et al., ” Thermionic rf gun injector employing velocity bunching toward sub-hundred femtosecond electron pulses”, submit elsewhere, 2011.
    [11] L. Young, J. Billen, ”The particle tracking code PARMELA”, PAC 2003.
    [12] M. Ferrario et al., ”Direct measurement of the double minimum in the beam dynamics of the Sparc high-brightness photoinjector”, Physical review letters 99, 234801(2007).
    [13] Y. Li, J. W. Lewellen, ”Generating a Quasiellipsoidal Electron Beam by 3D Laser-Pulse Shaping”, Physical review letters 100, 074801(2008).
    [14] W. K. Lau et al., ”Emittance control and RF bunch compression in the NSRRC photoinjector”, Nuclear Instruments and Methods in Physics Research A, 637(2011) S91-94.
    [15] John Byrd, ”Progress in femtosecond timing distribution and synchronization for ultrafast light sources”, Fermi internal review, 2005.
    [16] M. Reiser, ”Theory and design of charged particle beams”, Wiley-Interscience Publication, USA, 1994.
    [17] D. T. Palmer, ”The Next Generation Photoinjector”, Stanford University, Ph.D. Thesis, 1998.
    [18] L. Staykov, ” Characterization of the transverse phase space at the photo-injector test facility in DESY, Zeuthen site”, Hamburg, Ph.D. Thesis, 2008.
    [19] M. Zhang, ”Emittance formula for slits and pepper-pot measurement”, Fermi National Accelerator Laboratory, 1996.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE