簡易檢索 / 詳目顯示

研究生: 游淑敏
論文名稱: 以WAT參數資料建構半導體研發設計階段黃金晶方群聚分析
Golden Die Clustering Analysis at R&D Stage with WAT Parameters in Semiconductor Manufacturing
指導教授: 陳飛龍
劉淑範
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 90
中文關鍵詞: 黃金晶方晶圓允收測試製程空間主成份分析自我組織映射網路
外文關鍵詞: Golden Die, Wafer Acceptance Test, Process Window, Principal Component Analysis, Self-Organizing Map
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣半導體產業卓越的表現與亮眼的成績,使得台灣在全球半導體市場一直居於舉足輕重的關鍵地位,但如何保持既有優勢、創造新的市場格局,便是台灣半導體產業必須面對的課題。在半導體研發設計過程中,研發設計單位會利用WAT測試資料尋找符合最初電路模擬元件設計目標與功能的晶方─黃金晶方,透過這些具代表性的黃金晶方之WAT資料回饋,可加速製程空間的分析,然而由於WAT測試資料分析時間與成本的限制,不易進行黃金晶方的定義與挑選,有鑑於此,本研究建構半導體研發設計階段WAT參數分析模型以協助研發設計單位解決此問題,利用WAT測試資料在晶圓上定義群聚,並以研發設計單位最初定義的黃金晶方為分析基礎,利用類神經網路中自我組織映射網路(SOM)之分群演算法,找到與黃金晶方相似的晶方群,而相似黃金晶方群的搜尋增加WAT資料的回饋,提升分析製程空間的效率。本研究以某知名半導體廠研發階段WAT測試資料,並建立系統以驗證分析模型之效用,經由實證結果顯示,本研究方法可有效找到黃金晶方座落的群聚,並進一步找到相似黃金晶方群,因此本研究所提出之分析方法能輔助研發單位以快速有效率方式分析製程空間,減少研發階段所耗用的時間與人力。


    Taiwan's semiconductor industry has played a prominent role in global semiconductor market because of its excellent and outstanding achievements. The new challenge to Taiwan's semiconductor industry is how to maintain the competitive advantages and create a whole new business market. In the semiconductor research and design (R&D) stage, the R&D department would find the golden die that meets simulation performance of circuit design. The analysis of process window can be accelerated by the feedback of wafer acceptance test (WAT) data of the golden die. However, it is difficult to define and select the golden die due to cost restrictions and limited time. Accordingly, this research aims to build a model to analyze WAT data at R&D stage during semiconductor fabrification to help R&D department resolve these problems. In this research, WAT data are collected and utilized to classify dices on a wafer and find similar golden dice based on the pre-defined golden die. Similar golden dices provide much more feedback of WAT data, and then the efficiency of process window analysis can then be improved. Real WAT data at R&D stage during semiconductor fabrification are collected from a famous semiconductor manufacturing company and were experimented through the presented analysis model. The experimental results show that the presented model can successfully find similar golden dice in the cluster that a golden die falls. Therefore, the proposed methodology can help the R&D department analyze process window more quickly and efficiently, and the analysis time and cost are greatly reduced at R&D stage during semiconductor fabrification.

    摘要 I ABSTRACT II 致謝詞 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的 3 1.4 論文架構 4 第二章 文獻探討 6 2.1半導體相關製程介紹 6 2.1.1半導體產品製程技術的開發流程 6 2.1.2半導體製造流程 9 2.1.3 晶圓允收測試 14 2.2資料維度縮減 15 2.2.1特徵選取(Feature Selection) 16 2.2.2特徵萃取(Feature Extraction) 16 2.3資料探勘技術 20 2.3.1資料探勘介紹 20 2.3.2類神經網路 24 2.3.2.1類神經網路原理 24 2.3.2.2類神經網路模式 26 2.3.3單一連結聚合 28 2.3.4 K-Means 29 2.4半導體取樣相關資料之分析 30 第三章 研發設計階段WAT參數群聚分析 32 3.1 問題定義與架構 32 3.2 資料前處理 38 3.3 建立分析模型 42 3.3.1 SOM群聚分析 42 3.3.2相似黃金晶方群之分析 48 3.3.3 製程空間之分析 50 第四章 系統實作與實證分析 51 4.1系統建構與實作 51 4.2輸出結果討論 64 4.2.1 SOM群聚結果 64 4.2.2相似黃金晶方群分析 72 4.3 不同群聚分析方法之比較 76 第五章 結論 81 5.1結論 81 5.2未來研究發展方向 83 參考文獻 84

    經濟部工業局半導體產業推動辦公室:產業現況,http://www.sipo.org.tw/ IndustryOverview/overview-2.asp。

    王保進,2004,多變量分析─套裝程式與資料分析,高等教育文化事業有限公司。

    王進德,2007,類神經網路與模糊控制理論入門與應用,全華科技圖書股份有限公司。

    林東慶,2006,「以灰色理論和類神經網路預測航空客貨運量之變化」,國立成功大學民航研究所碩士論文。

    林寅智,1998,「以工程資料為基礎之半導體故障分析系統」,國立清華大學工業工程與工程管理研究所碩士論文。

    林瑞山,2004,「類神經網路於預測晶圓測試良率之應用」,國立成功大學工學院工程管理專班碩士論文。

    張丁才、陳佳鈴,2005,「應用資料探勘於壽險業之客戶分群研究」,中華管理學報,頁 67-74。

    張光佑,2005,「探討特徵萃取要素於小樣本分類問題」,國立台中教育大學教育測驗統計研究所碩士論文。

    張柏年,2003,「以倒傳遞網路為基礎之自動化晶圓缺陷檢測系統」,國立清華大學工業工程與工程管理研究所碩士論文。

    張智星,2005,MATLAB 程式設計與應用:入門篇,清蔚科技出版。

    陳正昌、程炳林、陳新豐、劉子健,2003,多變量分析─統計軟體應用,五南圖書出版股份有限公司。

    陳同孝、陳雨霖、劉明山、許文綬、林志強、邱永興,2006,「結合K-means及階層式分群法之二階段分群演算法」,電腦學刊,第十七卷,第一期。

    陳昭榮,2002,「應用自我組織類神經網路於最長不相交路徑問題」,台北科技大學學報,第三十五卷,第二期。
    陳麗伃,2004,「以資料挖礦為基礎之半導體測試性WAT資料分析診斷」,國立清華大學工業工程與工程管理研究所碩士論文。

    黃俊銘,2008,數值方法─使用MATLAB 程式語言,全華科技圖書股份有限公司。

    黃靜文,2005,「維度縮減應用於蛋白質質譜儀資料」,國立政治大學統計學研究所碩士論文。

    許文豪,2000,「圖形辨識概述與實作」,國立清華大學資訊系統與應用研究所碩士論文。

    彭文正,2001,資料採礦─顧客關係管理暨電子行銷之應用,數博網資訊股份有限公司。

    葉怡成,1999,類神經網路模式應用與實作,儒林圖書有限公司。

    游智翔,2001,「多重bin層良率群聚分析之研究」,國立清華大學統計學研究所碩士論文。

    楊淑瑩,2008,模式識別與智慧計算:Matlab 技術實現,電子工業出版社。

    蔡易牟,2004,「普適提之變數選擇」,國立東華大學應用數學系研究所碩士論文。

    魏連均,2006,「應用類神經網路建構晶圓圖故障圖樣辨識模式」,國立清華大學工業工程與工程管理研究所碩士論文。

    簡禎富、施義成、林振銘、陳瑞坤,2005,半導體製造技術與管理,國立清華大學出版社。

    蘇春木、張孝春,1998,機器學習─類神經網路、模糊系統以及基因演算法則,全華科技圖書股份有限公司。

    Alpaydin, E., 2004. Introduction to machine learning. MIT Press.

    Anaparthi, K.K., Chaudhuri, B., and Thornhill, N.F., 2005. Coherency identification in power systems through principal component analysis, IEEE Transactions on Power Systems, 20, 1658-1660.

    Ankerst, M., Breunig, M., and Kriegel, H.P., 1999. OPTICS: Ordering points to identify the clustering structure, In Proc. ACM-SIGMOD Int. Conf. Management of Data, Philadelphia, PA, 49-60.

    Azevedo and Rotandi, D.N., 2007. Application of data mining techniques to the storage management and online distribution of satellite images, Rio de Janeiro, Brazil, 955-960.

    Balasinski, A., 2005. DfM for SoC, Proceedings of the 9th International Database Engineering & Application Symposium, 41-46.

    Barbancho, J., Leon, C., and Molina, F.J., 2007. Using artificial intelligence in routing schemes for wireless networks, Computer Communications, 30, 2802-2811.

    Bohr, M.T. and El-Mansy, Y.A., 1998. Technology for advanced high-performance microprocessors, IEEE Trans. Electron Devices, 45, 620-625.

    Bose, B.K., 2007. Neural network applications in power electronics and motor drives: An introduction and perspective, IEEE Transactions on Industrial Electronics, 54, 14-33.

    Chen, T.S., Lin, C.C, Chiu, Y.H., and Chen, R.C., 2006. Combined density and constraint-based algorithm for clustering, In Proceedings of 2006 International Conference on Intelligent System and Knowledge Engineering.

    Cheng, C.Y. and Cheng F.T, 2005. Engineering-chain requirements for semiconductor industry, Proceedings of the 2005 IEEE International Conference on Automation Science and Engineering, Edmonton, 381-386.

    Chien, C.F., Hsu, S.C., Peng, S., and Wu, C.H., 2000. A cost-based heuristic for statistically determining sampling frequency in a wafer fab, Semiconductor Manufacturing Technology Workshop, 217-229.

    Cook, R.D. and Weisberg, S., 1994. On the interpretation of regression polts, Journal of the American Statistical Association, 89, 177-189.

    Chung, S.H., Huang, C.Y., and Lee, A.H.I., 2006. Capacity allocation model for photolithography workstation with the constraints of process window and machine dedication, Production Planning and Control, 17(7), 678-688.

    Du, Q., 2007, Modified fisher's linear discriminant analysis for hyperspectral imagery, IEEE Geoscience and Remote Sensing Letters, 4, 503-507.

    Dunham, M.H., 2002, Data mining introductory and advanced topics, Pearson Education: New Jersey.

    Fan, C.M., Guo, R.S., and Chang, S.C., 2000. SHEWMA: An end-of-line SPC scheme using wafer acceptance test data, IEEE Transactions on Semiconductor manufacturing, 13, 344-358.

    Fayyad, U., 1997. Data mining and knowledge discovery in dataBase: Implication for scientific databases, Scientific and Statistical Database Management, 2-11.

    Fukunaga, K., 1990. Introduction to statistical pattern recognition, San Diego: Academic Press Inc.

    Kaufman., L. and Rousseeuw, P.J., 1990. Finding groups in data: An introduction to cluster analysis, John Wiley & Sons.

    Kohonen, T., 1988. An introduction to neural computing, Neural Networks, 1(1), 3-16.

    Kohonen, T., 1990. The self-Organizing map, Proc. IEEE, 78(9), 1464-1480.

    Kohonen, T., Oja, E., Simula, O., and Kangas, J., 1996. Engineering applications of the self-organizing map, Proceedings of The IEEE, 84, 1358-1384.

    Han, J. and Kamber, M., 2000. Data mining: Concepts and techniques, Morgan Kaufmann.

    Hsieh, S., Lin, S.C., Lee, M.H, Wang, J.R., and Lin, C., et al., 1999. A novel assessment of process control monitor in advanced semiconductor manufacturing: A complete set of addressable failure site test structures, in Proc. Int. Symp. Semiconductor Manufacturing (ISSM), 241-244.

    Lee, J.H., Yu, S.J., and Park, S.C., 2001. Design of intelligent data sampling methodology based on data mining, IEEE Transactions on Robotics and Automation, 17(5), 637-649.

    Lee, J.H., 2002. Artifical intelligence-based sampling planning system for dynamic manufacturing process, Expert systems with applications 22, 117-133.

    Li, K.C., 1991. Sliced inverse regression for dimension reduction,” Journal of the American Statistical Association, 86, 316-342.

    Li, K.C., 1992. On principal hessian directions for data visualization and dimension reduction: Another application of Stein’s Lemma, Journal of the American Statistical Association, 87, 1025-1039.

    Liu, X.S., Shi, C.S., and Cheng, Y.Y., 2007. A fast method for identifying the quality of Chinese medicine injections based on self-organizing maps neural network, Chinese Journal of Analytical Chemistry, 35, 1483-1486.

    Lukaszek, W., Grambow, K.G., and Tarbrough, W.J., 1990. Test chip based approach to automated diagnosis of CMOS yield problems, IEEE Trans. Semiconduct. Manufact., 3, 18-27.

    Miyamoto, K., Inoue, K., Tamura, I., Kondo, N., Inoto, H., et al., 2000. Yield management methodology for SoC vertical yield Ram, in Proc. Int. Electron Device Meeting.

    Nag, P.K., Maly, W., and Jocobs, H.J., 1997. Simulation of yield/cost learning curves with Y4,” IEEE Transactions on Semiconductor Manufacturing, 10(2), 256-266.

    Narendra, P.M. and Fukunage, K., 1997. A branch and bound algorithm for feature subset selection, IEEE Trans. Computers, 6(9), 917-922.

    Nauck, D., Klawonn, F., and Kruse, R., 1997. Foundations of neuro-fuzzy systems, John Wiley & Sons.

    Pelissier, J.L. and Flinois, X., 1989. Fully-integrated dynamic fault imaging system for failure analysis and performance enhancement of VLSI, Proceedings of the 1st European Test Conference, Paris, France, 180-183.

    Pudil, P., Novovicova, J., and Kittler, J., 1994. Floating search methods in feature selection, Pattern Recognition Letters, 15, 1119-1125.

    Ravi, V., Kurniawan, H., Thai, P.N.K, and Kumar, P.R., 2008. Soft computing system for bank performance prediction, Applied Soft Computing, 8, 305-315.

    Roberto, B., 1994. Using mutual information for selecting features in supervised neural net learning, IEEE Transactions on Neural Networks, 5, 337-550.

    Schalkoff, R.J., 1997. Artificial neural networks, Mcgraw-hill International Editions.

    Sekar, R., Bendre, M., Dhurjati, D., and Bollineni, P., 2001. A fast automaton-based method for detecting anomalous program behaviors, Proceedings 2001 IEEE Symposium on Security and Privacy, Oakland, California, 144 – 155.

    Siedlecki, W. and Sklansky, J., 1989. A note on genetic algorithms for large-scale feature selection, Pattern Recognition Letters, 10, 335-347.

    Wang, H.Y., Wang, Z.F., and Leng, Y., 2007. PCA plus F-LDA: A new approach to face recognition, International Journal of Pattern Recognition and Artificial Intelligence, 21, 1059 – 1068.

    Wilson, D. and Walton, A.J., 1994. Automatic in-line to end-of-line defect correlation using FSRAM test structure for quick killer defect identification, in Proc. IEEE Int. Conf. Microelectronic Test Structures, 160-163.

    Witten, H.I. and Frank, E., 2005. Data mining: Practical machine learning tools techniques, Rio de Janeiro, Brazil, 2nd ed, Elsevier.

    Yan, A.M., Kerschen, G., and Boe, P.D., Structural damage diagnosis under varying environmental conditions-Part I: A linear analysis, Mechanical Systems and Singal Processing, 21, 847-864.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE