簡易檢索 / 詳目顯示

研究生: 劉倚良
Liu, Yi-Liang
論文名稱: 具雙向隔離聯網及能源收集功能之電動車永磁同步馬達驅動系統
AN ELECTRIC VEHICLE PMSM DRIVE WITH BIDIRECTIONAL ISOLATED GRID-CONNECTED AND ENERGY HARVESTING CAPABILITIES
指導教授: 廖聰明
Liaw, Chang-Ming
口試委員: 黃昌圳
Hwang, Chang-Chou
陳盛基
Chen, Seng-Chi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 176
中文關鍵詞: 電動車內置磁石式永磁同步馬達蓄電池超電容介面轉換器隔離諧振轉換器能源收集直流/直流轉換器再生煞車無位置感測控制電網至車輛車輛至家庭車輛至電網切換式整流器太陽能光伏
外文關鍵詞: sensorless, V2H
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在開發一蓄電池/超電容供電之電動車用內置磁石式永磁同步馬達驅動系統,具雙向隔離聯網及能源收集功能,電氣隔離由諧振轉換器達成。蓄電池經由全橋式直流/直流介面轉換器建立馬達驅動系統之直流鏈電壓,直流鏈電壓可低於或高於電池電壓,在廣速度範圍下獲得良好的驅動性能。超電容經由一雙向升壓/降壓直流/直流轉換器介接於直流鏈,其具快速充/放電響應,協助電池提供加速功率,並回收再生煞車所生之能量。
    首先,研製標準蓄電池/超電容混合能源供電之電動車永磁同步馬達驅動系統,必需之感測及控制機構均適當地處理。此外,換相時刻及直流鏈電壓設定亦均妥予為之,所建電動車馬達驅動系統之良好動態響應及穩態操作特性均由實測評估佐證。更有進者,詳細實測評定所建馬達驅動系統之能源轉換效率。接著,建構多種高頻注入無位置感測馬達驅動系統,並從事其實測性能比較評估。其中以所提之變化頻率高頻信號注入策略,降低反電勢諧波對轉子位置估測及馬達驅動性能之影響。
    在閒置狀態,電網至車輛/車輛至家庭/車輛至電網等之操作可藉由馬達驅動系統既有元件適當配接達成,電氣隔離由諧振轉換器提供。於電網至車輛操作,以切換式整流器建構之車載充電器,獲得良好電池充電特性。至於車輛至家庭/車輛至電網之操作,車載電池經由所建單相三線式變頻器,採行所提差模與共模之控制策略,供電給家用負載,或回送電能至電網。
    對於所建之能源收集架構,車輛於路跑中,車頂之太陽光伏可直接對電池充電。於閒置下,屋頂之太陽光伏及可取用之直流或交流電源,均可利用所建之無橋式升壓型切換式整流器及諧振轉換器對車載電池進行輔助充電。


    This thesis develops a battery/super-capacitor (SC) powered electric vehicle (EV) interior permanent magnet synchronous motor (IPMSM) drive having isolated grid- connected bidirectional operations and energy harvesting capabilities. The galvanic isolation is provided by a bidirectional resonant DC/DC converter. The motor DC-link voltage is mainly established by the battery through an H-bridge DC/DC interface converter. The DC-link voltage can be varied below or above the battery voltage to yield enhanced driving performance over wide speed range. The SC is interfaced to the DC-link via a bidirectional boost/buck DC/DC converter. It can quickly discharge energy to assist the motor in rapid acceleration and store the recovered regenerative braking energy.
    First, the standard battery/SC hybrid source fed EV IPMSM drive is designed and implemented. The necessary sensing and control schemes are properly treated. Moreover, the commutating instant setting and the DC-link voltage profiling are further made. Good dynamic responses and steady-state operating characteristics of the established EV drive are achieved and evaluated experimentally. More specifically, the energy conversion efficiencies of the employed IPMSM are assessed in detail. Next, the position sensorless EV IPMSM drives based on various high-frequency signal injection (HFI) approaches are established and comparatively evaluated. The proposed changed injection signal frequency approach can effectively reduce the inherent back-EMF harmonic effects on the estimated rotor position and the motor driving performances.
    In idle condition, the G2V/V2H/V2G operations can be conducted using the motor drive embedded components, and a bidirectional LLC resonant converter provides the galvanic isolation. In G2V operation, good charging characteristics are obtained via the established on-board switched-mode rectifier (SMR) based charger. As to the V2H/V2G operations, the battery can power the home appliances or send power to the grid via the developed single-phase three-wire (1P3W) inverter using the proposed differential mode and common mode control approaches.
    For the established energy harvesting system, the EV roof PV can directly charge the battery under driving condition. In idle condition, the house roof PV, the available DC or single-phase AC source can charge the battery via the constructed bridgeless boost SMR and the LLC resonant converter.

    ABSTRACT i ACKNOWLEDGEMENT ii LIST OF CONTENTS iii LIST OF FIGURES viii LIST OF TABLES xix LIST OF SYMBOLS xxi LIST OF ABBREVATIONS xxxi CHAPTER 1 INTRODUCTION 1 CHAPTER 2 FUNCTIONAL DESCRIPTION AND EXPLORATION OF RELATED TECHNOLOGIES 7 2.1 Introduction 7 2.2 Functional Descriptions 8 2.3 Permanent Magnet Synchronous Motor Drives 12 A. Some Key Technologies of an EV PMSM Drive 12 B. Motor Structures 13 C. Physical Modeling 14 D. Parameter Estimation of the Employed PMSM 17 E. Commutation Shift 20 2.4 Electric Vehicles and Related Power Electronic Technologies 21 A. Classification of EVs 21 B. Motors and Power Converters 22 C. Power Control Unit 22 2.5 Battery and Supercapacitor 23 A. Battery 23 B. Supercapacitor 23 C. Possible Battery/SC Interconnected Schematics 23 2.6 Interface Converters 25 A. DC/DC converters 25 B. Inverters 26 C. Switched-Mode Rectifiers 28 2.7 G2V/V2G/V2H Operations 31 A. Concept of EV as a Movable Energy Storage 31 B. Schematic Oriented Classification 32 2.8 Some Integrated Chargers 33 CHAPTER 3 STANDARD ELECTRIC VEHICLE IPMSM DRIVE 35 3.1 Introduction 35 3.2 Functional Description of the Developed EV IPMSM Drive 35 A. Functional Descriptions 35 3.3 Establishment of IPMSM Drive 38 A. Power Circuit 38 B. Control Schemes 39 3.4 Battery Interface DC/DC Converter 41 A. Power Circuit 42 B. Control Schemes 43 C. Experimental Performance Evaluation for the H-bridge DC/DC Converter 49 3.5 Experimental Evaluation of the Standard EV IPMSM Drive 50 A. Acceleration/Deceleration and Reversible Running Characteristics 50 B. Steady-state Characteristics 51 C. Speed Dynamic Response 52 D. Efficiency Assessment 53 3.6 Effectiveness of Adjustable DC-link Voltage 57 3.7 Effectiveness of SC Energy Support 61 A. SC Interface DC/DC Converter 61 B. Operation Control 63 C. Measured Results 64 3.8 Dynamic Braking 66 CHAPTER 4 POSITION SENSORLESS ELECTRIC VEHICLE IPMSM DRIVES 69 4.1 Introduction 69 4.2 Sine-wave HFI Position Sensorless IPMSM Drive 69 A. System Configuration and Operation Principle 69 B. System Parameters 72 C. Measured Results 75 4.3 Square Wave HFI Position Sensorless IPMSM Drive 86 A. System Configuration and Operation Principle 86 B. System Parameters 89 C. Measured Results 89 4.4 The Developed Hybrid Sine-wave/Square-wave HFI Position Sensorless IPMSM Drive 94 A. System Configuration 94 B. Performance Evaluation 94 CHAPTER 5 GRID-CONNECTED OPERATIONS OF THE DEVELOPED EV IPMSM DRIVE WITH GALVANIC ISOLATION 96 5.1 Introduction 96 5.2 Bidirectional LLC Resonant DC/DC Converter 96 A. Operation Principle 96 B. Design of System Components 100 C. Measured Results 104 5.3 G2V Charging Operation 106 5.3.1 System Configuration 106 5.3.2 Single-phase SMR Based G2V Charger 109 A. Single-phase Boost SMR 109 B. Measure Results 111 5.3.3 Three-phase SMR Based G2V Charger 114 A. Three-phase Boost SMR 114 B. Measured Results 116 5.4 V2H and V2G Operations 119 5.5 V2H Discharging Operation 121 A. Power Circuit 122 B. Modeling of 1P3W Inverter 122 C. Control Schemes 124 D. Experimental Results 127 5.6 V2G Discharging Operation 134 A. Functional Description 134 B. Control Schemes 135 C. Experimental Results 137 CHAPTER 6 EV ON-BOARD BATTERY AUXILIARY CHARGING VIA ENERGY HARVESTING SYSTEM 143 6.1 Introduction Operation 143 6.2 System Configuration 143 6.3 Plug-in Sources via Single-phase Bridgeless SMR 144 A. H-bridge Battery Interface DC/DC Converter 146 B. Bidirectional LLC Resonant Converter 147 C. Single-phase Bridgeless Boost SMR 147 D. Plug-in Mechanism Based Auxiliary Battery Charger with AC Source Input 152 E. Plug-in Mechanism Based Auxiliary Battery Charger with DC Source Input 158 6.4 Harvested EV Roof PV Source via DC/DC Boost Converter 164 A. Power Circuit 164 B. Control Scheme 166 C. Experimental Results 166 CHAPTER 7 CONCLUSIONS 167 REFERENCES 169

    [1] S. G. Wirasingha and A. Emadi, “Classification and review of control strategies for plug-in hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 111-122, 2011.
    [2] K. Rajashekara, “Present status and future trends in electric vehicle propulsion technologies,” IEEE Trans. Power Electron., vol. 1, no. 1, pp. 3-10, 2013.
    [3] E. Fernandez, L. Romeral, and V. Sala, “Power converters and its application in electric traction systems. Analysis present and future technologies,” IEEE Latin American Trans., vol. 14, no. 2, pp. 631-638, 2016.
    [4] B. Sarlioglu, C. T. Morris, D. Han, and S. Li, “Driving toward accessibility: a review of technological improvements for electric machines, power electronics, and batteries for electric and hybrid vehicles,” IEEE Ind. Appl., vol. 23, no. 1, pp. 14-25, 2017.
    [5] M. Zeraoulia, M. E. H. Benbouzid and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: A comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, 2006.
    [6] M. Arata, Y. Kurihara, D. Misu, and M. Matsubara, “EV and HEV motor development in TOSHIBA,” in Proc. IEEE IPEC, 2014, pp. 1874-1879.
    [7] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transp. Electrific., vol. 1, no. 3, pp. 245-254, 2015.
    [8] E. Bostanci, M. Moallem, A. Parsapour, and B. Fahimi, “Opportunities and challenges of switched reluctance motor drives for electric propulsion: a comparative study,” IEEE Trans. Transp. Electrific., vol. 3, no. 1, pp. 58-75, 2017.
    [9] S. Weisgerber, A. Proca and A. Keyhani, “Estimation of permanent magnet motor parameters,” in Proc. IEEE IAS, 1997, vol. 1, no. 1, pp. 29-34.
    [10] C. C. Liaw, C. M. Liaw, H. C. Chen, Y. C. Chang, and C. M. Huang, “Robust current control and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC, 2003, vol. 2, pp. 1045-1051.
    [11] J. Y. Lee, S. H. Lee, G. H. Lee, J. P. Hong, and J. Hur, “Determination of parameters considering magnetic nonlinearity in an interior permanent magnet synchronous motor,” IEEE Trans. Magn., vol. 42, no. 4, pp. 1303-1306, 2006.
    [12] M. Kondo, “Parameter measurements for permanent magnet synchronous machines,” IEEJ Trans. Elect. Electron. Eng., vol. 2, no. 2, pp. 109-117, 2007.
    [13] S. Kar and S. K. Mishra, “Direct torque control of permanent magnet synchronous motor drive with a sensorless initial rotor position estimation scheme,” in Proc. IEEE APCET, 2012, pp. 1-6.
    [14] Y. S. Choi, H. H. Choi, and J. W. Jung, “Feedback linearization direct torque control with reduced torque and flux ripples for IPMSM drives,” IEEE Trans. Power. Electron., vol. 31, no. 5, pp. 3728-3737, 2016.
    [15] J. J. Justo, F. Mwasilu, E. K. Kim, J. Kim, H. H. Choi, and J. W. Jung, “Fuzzy model predictive direct torque control of IPMSMs for electric vehicle applications,” IEEE/ASME Trans. Mechatronics, vol. 2, no. 4, pp. 1542-1553, 2017.
    [16] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
    [17] N. Prabhakar and M. K. Mishra, “Dynamic hysteresis current control to minimize switching for three-phase four-leg VSI topology to compensate nonlinear load,” IEEE Trans. Power Electron., vol. 25, no. 8, pp. 1935-1942, 2010.
    [18] M. C. Chou, C. M. Liaw, S. B. Chien, F. H. Shien, J. R. Tsai, and H. C. Chang, “Robust current and torque controls for PMSM driven satellite reaction wheel,” IEEE Trans. Aerosp. Electron. Syst., vol. 47, no. 1, pp. 58-74, 2011.
    [19] F. Morel, L. S. Xuefang, J. M. Retif, B. Allard, and C. Buttay, “A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2715-2728, 2009.
    [20] M. Siami, D. A. Khaburi, A. Abbaszadeh, and J. Rodriguez, “Robustness improvement of predictive current control using prediction error correction for permanent-magnet synchronous machines,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3458-3466, 2016.
    [21] J. Sawma, F. Khatounian, E. Monmasson, L. Idkhajine, and R. Ghosn, “Analysis of the impact of online identification on model predictive current control applied to permanent magnet synchronous motors,” IET Elect. Power Appl., vol. 11, no. 5, pp. 864-873, 2017.
    [22] F.F.M. EI-Sousy, “Robust wavelet-neural-network sliding-mode control system for permanent magnet synchronous motor drive,” in Proc. IET. Elect. Power Appl. 2011, vol. 5, pp. 113-132.
    [23] M. Preindl and S. Bolognani, “Model predictive direct speed control with finite control set of PMSM drive systems,” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 1007-1015, 2013.
    [24] J. W. Jung, V. Q. Leu, T. D. Do, E. K. Kim, and H. H. Choi, “Adaptive PID speed controller design for permanent magnet synchronous motor drives,” IEEE Trans. Power Electron., vol. 30, no .2, pp. 900-908, 2015.
    [25] A. V. Sant and K. R. Rajagopal, “PM synchronous motor speed control using hybrid fuzzy-PI with novel switching functions,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4672-4675, 2009.
    [26] D. V. Lukichev, G. L. Demidova, “Speed control in PMSM drive with non-stiff load and unknown parameters using PI- and fuzzy adaptive PID controllers,” 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), pp. 1-5, 2017.
    [27] S. Chaithongsuk, B. N. Mobarakeh, J. P. Caron, N. Takorabet, and F. M. Tabar, “Optimal design of permanent magnet motors to improve field-weakening performances in variable speed drives,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2484-2494, 2012.
    [28] S. Bolognani, S. Calligaro, and R. Petrella, ‘‘Adaptive flux-weakening controller for interior permanent magnet synchronous motor drives,’’ IEEE J. Emerging Sel. Topics Power Electron., vol. 2, no. 2, pp. 236-248, 2014.
    [29] M. S. Toulabi, J. Salmon, and A. M. Knight, “Concentrated winding IPM synchronous motor design for wide field weakening applications,” IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 1892-1900, 2017.
    [30] T. Burress, “Benchmarking EV and HEV technologies,” Technical Report ORNL, 2015.
    [31] M. C. Chou and C. M. Liaw, “PMSM-driven satellite reaction wheel system with adjustable DC-link voltage,” IEEE Trans. Aerosp. Electron. Syst., vol. 50, no. 2, pp. 1359-1373, 2014.
    [32] C. M. Liaw, K. W. Hu, Y. S. Lin, and T. H. Yeh, “An electric vehicle IPMSM drive with interleaved front-end DC/DC converter,” IEEE Trans. Veh. Technol., vol. 65, no. 6, pp. 4493-4504, 2016.
    [33] M. B. Camara, H. Gualous, F Gustin, A. Berthon, and B. Dakyo, “DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications- polynomial control strategy,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 587-597, 2010.
    [34] J. Cao and A. Emadi, “A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 122-132, 2012.
    [35] P. J. Grbovic, P. Delarue, P. Le Moigne, and P. Bartholomeus, “The ultracapacitor-based regenerative controlled electric drives with power-smoothing capability,” IEEE Trans. Ind. Electron., vol. 59, no. 12, pp. 4511-4522, 2012.
    [36] A. Castaings, W. Lhomme, R. Trigui, and A. Bouscayrol, “Practical control schemes of a battery/supercapacitor system for electric vehicle,” IET Elect. Syst. Transport., vol. 6, no. 1, pp. 20-26, 2016.
    [37] Y. Parvini, J. B. Siegel, A. G. Stefanopoulou, and A. Vahidi, “Supercapacitor electrical and thermal modeling, identification, and validation for a wide range of temperature and power applications,” IEEE Trans. Ind. Electron., vol. 63, no. 3, pp. 1574-1585, 2016.
    [38] U. Manandhar, N. R. Tummuru, S. K. Kollimalla, A. Ukil, G. H. Beng, K. Chaudhari, “Validation of faster joint control strategy for battery- and supercapacitor-based energy storage system,” IEEE Trans. Ind. Electron., vol. 65, no. 4, pp. 3286-3295, 2018.
    [39] J. I. Cairo and A. Sumper, “Requirements for EV charge stations with photovoltaic generation and storage,” in Proc. IEEE ISGT., 2012, pp. 1-6.
    [40] S. A. Singh and S. S. Williamson, “Comprehensive review of PV/EV/grid integration power electronic converter topologies for DC charging applications,” in Proc. IEEE ITEC., 2014, pp. 1-5.
    [41] M. Brenna, A. Dolara, F. Foiadelli, S. Leva, and M. Longo, “Urban scale photovoltaic charging stations for electric vehicles,” IEEE Trans. Sustain. Energy, vol. 5, no. 4, pp. 1234-1241, 2014.
    [42] M. Abdelhamid, R. Singh, and I. Haque, “Role of PV generated DC power in transport sector: case study of plug-in EV,” in Proc. IEEE ICDCM., 2015, pp. 299-304.
    [43] K. Chaudhari, A. Ukil, K. N. Kumar, U. Manandhar, and S. K. Kollimalla, “Hybrid optimization for economic deployment of ESS in PV-integrated EV charging stations,” IEEE Trans. Ind. Informat., vol. 14, no. 1, pp. 106-116, 2018.
    [44] N. Matsui, “Sensorless PM brushless DC motor drives,” IEEE Trans. Ind. Electron., vol. 43, no. 2, pp. 300-308, 1996.
    [45] Y. Inoue, Y. Kawaguchi, S. Morimoto, and M. Sanada, “Performance improvement of Sensorless IPMSM drives in a low-speed region using online parameter identification,” IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 798-804, 2011.
    [46] M. A. Hamida, J. D. Leon, A. Glumineau, and R. Boisliveau, “An adaptive interconnected observer for sensorless control of PM synchronous motors with online parameter identification,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 739-748, 2013.
    [47] M. S. Rafaq, F. Mwasilu, J. Kim, H. H. Choi, and J. W. Jung, “Online parameter identification for model-based sensorless control of interior permanent magnet synchronous machine,” IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4631-4643, 2017.
    [48] J. H. Jang, J. I. Ha, M. Ohto, K. Ide, and S. K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, 2004.
    [49] J. M. Guerrero, M. Leetmaa, F. Briz, A. Zamarron, and R. D. Lorenz, “Inverter nonlinearity effects in high-frequency signal-injection-based sensorless control methods,” IEEE Trans. Ind. Appl., vol. 41, no. 2, pp. 618-626, 2005.
    [50] H. W. De Kock, M. J. Kamper, and R. M. Kennel, “Anisotropy comparison of reluctance and PM synchronous machines for position sensorless control using HF carrier injection,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1905-1913, 2009.
    [51] D. Raca, P. Garcia, D. D. Reigosa, F. Briz, and R. D. Lorenz, “Carrier-signal selection for sensorless control of PM synchronous machines at zero and very low speeds,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 167-178, 2010.
    [52] G. D. Andreescu and C. Schlezinger, “Enhancement sensorless control system for PMSM drives using square-wave signal injection,” in Proc. IEEE SPEEDAM, 2010, pp. 1508-1511.
    [53] Y. D. Yoon, S. K. Sul, S. Morimoto and K. Ide, “High bandwidth sensorless algorithm for AC machines based on square-wave-type voltage injection,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1361-1370, 2011.
    [54] D. Kim, Y. C. Kwon, S. K. Sul, J. H. Kim and R. S. Yu, “Suppression of injection voltage disturbance for high- frequency square-wave injection sensorless drive with regulation of induced high-frequency current ripple,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 302-312, 2016.
    [55] G. Foo and M. F. Rahman, “Sensorless sliding-mode MTPA control of an IPM synchronous motor drive using a sliding-mode observer and HF signal injection,” IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 1270-1278, 2010.
    [56] I. Hideaki, I. Masanobu, K. Takeshi, and I. Kozo, “Hybrid sensorless control of IPMSM for direct drive applications,” in Proc. IEEE IPEC, 2010, pp. 2761-2767.
    [57] S. Bolognani, S. Calligaro, R. Petrella, and M. Tursini, “Sensorless control of IPM motors in the low-speed range and at standstill by HF injection and DFT processing,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 96-104, 2011.
    [58] W. Zine, L. Idkhajine, E. Monmasson, Z. Makni, P. A. Chauvenet, B. Condamin, and A. Bruyere, “Optimisation of HF signal injection parameters for EV applications based on sensorless IPMSM drives,” IET Elect. Power Appl., vol. 12, no. 3, pp. 347-356, 2018.
    [59] S. Po-ngam and S. Sangwongwanich, “Stability and dynamic performance improvement of adaptive full-order observers for Sensorless PMSM drive,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 588-600, 2012.
    [60] M. A. Hamida, J. D. Leon, A. Glumineau, and R. Boisliveau, “An adaptive interconnected observer for sensorless control of PM synchronous motors with online parameter identification,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 739-748, 2013.
    [61] Y. Park and S. K. Sul, “Sensorless control method for PMSM based on frequency-adaptive disturbance observer,” IEEE J. Emerging Sel. Topics Power Electron., vol. 2, no. 2, pp. 143-151, 2014.
    [62] R. W. Hejny and R. D. Lorenz, “Evaluating the practical low-speed limits for back-EMF tracking-based sensorless speed control using drive stiffness as a key metric,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1337-1343, 2011.
    [63] A. Sarikhani and O. A. Mohammed, “Sensorless control of PM synchronous machines by physics-based EMF observer,” IEEE Trans. Energy Convers., vol. 27, no. 4, pp. 1009-1017, 2012.
    [64] R. Antonello, L. Ortombina, F. Tinazzi, and M. Zigliotto, “Enhanced low-speed operations for sensorless anisotropic PM synchronous motor drives by a modified back-EMF observer,” IEEE Trans. Ind. Electron., vol. 65, no. 4, pp. 3069-3076, 2018.
    [65] J. Lara, A. Chandra, J. Xu, “Integration of HFSI and extended-EMF based techniques for PMSM sensorless control in HEV/EV applications,” 2012 Annual Conference on IEEE Industrial Electronics Society (IECON), pp. 3688-3693, 2012.
    [66] S. J. Chiang and C. M. Liaw "A single-phase three-wire transformerless inverter," IEE Proc. Pt. B, 1994, vol. 141, no. 4, pp. 197-205.
    [67] E. Koutroulis and F. Blaabjerg, “Methodology for the optimal design of transformerless grid-connected PV inverters,” IET Power Electron., vol. 5, no .8, pp. 1491-1499, 2012.
    [68] K. W. Hu and C. M. Liaw, “On an auxiliary power unit with emergency AC power output and its robust controls,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4387-4402, 2013.
    [69] H. Matsumoto, Y. Shibako, and Y. Neba, “Single-phase inverter with energy buffer and DC-DC conversion circuits,” IEEE Trans. Power Electron., vol. 32, no. 10, pp. 7615-7625, 2017.
    [70] S. E. Schulz, “Exploring the High-Power Inverter: Reviewing critical design elements for electric vehicle applications,” IEEE Electrification Magazine., vol. 5, no. 1, pp. 28-35, 2017.
    [71] M. C. Kisacikoglu, B. Ozpineci, and L. M. Tolbert, “EV/PHEV bidirectional charger assessment for V2G reactive power operation,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5717-5727, 2013.
    [72] M. Yilmaz and P. T. Krein, “Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5673-5689, 2013.
    [73] T. S. Ustun, C. R. Ozansoy, and A. Zayegh, “Implementing vehicle-to-grid (V2G) technology with IEC 61850-7-420,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 1180-1187, 2013.
    [74] F. Berthold, A. Ravey, B. Blunier, D. Bouquain, S. Williamson, and A. Miraoui, “Design and development of a smart control strategy for plug-in hybrid vehicles including vehicle-to-home functionality,” IEEE Trans. Transport. Electrific., vol. 1, no. 2, pp. 168-177, 2015.
    [75] M. C. Kisacikoglu, M. Kesler, and L. M. Tolbert, “Single-phase on-board bidirectional PEV charger for V2G reactive power operation,” IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 767-775, 2015.
    [76] V. Monteiro, J. G. Pinto, and J. L. Afonso, “Operation modes for the electric vehicle in smart grids and smart homes: present and proposed modes,” IEEE Trans. Veh. Technol., vol. 65, no. 3, pp. 1007-1020, 2016.
    [77] K. W. Hu and C. M. Liaw, “Incorporated operation control of DC microgrid and electric vehicle,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 202-215, 2016.
    [78] V. T. Tran, D. Sutanto, K. M. Muttaqi, “The state of the art of battery charging infrastructure for electrical vehicles: topologies, power control strategies, and future trend,” 2017 Australasian Universities Power Engineering Conference (AUPEC), 2017, pp. 1-6.
    [79] M. A. Masrur, A. G. Skowronska, J. Hancock, S. W. Kolhoff, D. Z. McGrew, J. C. Vandiver, J. Gatherer, “Military-based vehicle-to-grid and vehicle-to-vehicle microgrid- system architecture and implementation,” IEEE Trans. Transp. Electrific., vol. 4, no. 1, pp. 157-171, 2018.
    [80] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
    [81] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey, and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
    [82] T. Friedli and J. W. Kolar, “The essence of three-phase PFC rectifier systems Part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.
    [83] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151-2169, 2013.
    [84] F. Caricchi, F. crescimbini, F. G. Capponi, and L. Solero, “Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives,” in Proc. IEEE APEC, 1998, vol. 1, pp. 287-293.
    [85] M. A. Khan, I. Husain, and Y. Sozer, “Integrated electric motor drive and power electronics for bidirectional power between the electric vehicle and DC or AC grid,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5774-5783, 2013.
    [86] S. Kim and F. S. Kang, “Multifunctional onboard battery charger for plug-in electric vehicles,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3460-3472, 2015.
    [87] S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial electronics for electric transportation: current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, 2015.
    [88] M. A. Khan, A. Ahmed, I. Husain, Y. Sozer, and M. Badawy, “Performance analysis of bidirectional DC-DC converters for electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3442-3452, 2015.
    [89] I. Subotic, N. Bodo, and E. Levi, “An EV drive-train with integrated fast charging capability,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1461-1471, 2016.
    [90] R. Hou and A. Emadi, “Applied integrated active filter auxiliary power module for electrified vehicles with single-phase onboard charger,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 1860-1871, 2017.
    [91] N. Radimov, R. Orr, and T. K. Gachovska, “Bi-directional CLLC converter front-end for off-grid battery inverters,” IEEE IHTC., 2015, pp. 1-4.
    [92] W. L. Malan, D. M. Vilathgamuwa, and G. R. Walker, “Modeling and control of a resonant dual active bridge with a tuned CLLC network,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7297-7310, 2016.
    [93] P. He, and A. Khaligh, “Comprehensive analyses and comparison of 1kW isolated DC/DC converters for bidirectional EV charging systems,” IEEE Trans. Transp. Electrific., vol. 3, no. 1, pp. 147-156, 2017.
    [94] B. K. Lee, J. P. Kim, S. G. Kim, J. Y. Lee, “An isolated/bidirectional PWM resonant converter for V2G(H) EV on-board charger,” IEEE Trans. Veh. Technol., vol. 66, no. 9, pp. 7741-7750, 2017.
    [95] S. Zou, J. Lu, A. Mallik, and A. Khaligh, “Bi-directional CLLC converter with synchronous rectification for plug-in electric vehicles,” IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 998-1005, 2018.
    [96] “Digital signal controller TMS320F28335 data sheet,” Available: http://www.ti. com/lit/ds/symlink/tms320f28335.pdf, 2016.
    [97] K. C. Wang, “A Battery/Supercapacitor powered EV PMSM drive with grid connected and energy harvesting functions,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2017.
    [98] T. J. Barlow, S. Latham, I. S. McCrae, and P. G. Boulter, “A reference book of driving cycles for use in the measurement of road vehicle emissions,” 2009.

    QR CODE