簡易檢索 / 詳目顯示

研究生: 王亮崴
Wang. Liang Wei
論文名稱: 多元物理參數分析對於來自於胃幽門桿菌之偽紐結蛋白折疊機制研究以及探討
Multiparametric characterization of the folding mechanism of a pseudo-knotted protein from Helicobacter pylori
指導教授: 徐邦達
Hsu, Ban-Dar
徐尚德
Hsu, Shang-Te Danny
口試委員: 徐邦達
Hsu, Ban-Dar
徐尚德
Hsu, Shang-Te Danny
林易弘
Lin, Yi-Hung
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 69
中文關鍵詞: 扭結蛋白蛋白摺疊圓二色光譜儀螢光光譜儀
外文關鍵詞: knotted protein, protein folding, circular dichroism, fluorescence
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    現今已有大約700 種的扭結蛋白(knotted protein)被確認於蛋白質
    資料庫 (protein data bank),但對於扭結機制的形成以及在蛋白結構中
    所扮演的角色仍然不明確。本實驗致力於研究扭結蛋白折疊的機制而
    使用一個來自於胃幽門桿菌(Helicolbacter pylori)的蛋白,HP0242。此
    蛋白在形成同類二聚體時採用了兩個單體以穿越彼此的方式形成新
    穎的偽扭結結構,而這種特性使得HP0242 成為了研究扭結蛋白摺疊
    機制一個相當好的模板。
    本論文使用各種不同的光學儀器來以不同物理特性分析HP0242
    的摺疊機制。我們採用了包含內部以及同步輻射光源的遠紫外線圓二
    色光譜(far-UV circular dichroism)確立了此蛋白在化學變性的過程中
    有著中間產物的高度分布。內源螢光光譜(intrinsic fluorescence) 只偵
    測到自然狀態到達中間產物的過渡時期,原因在於HP0242 只存在一
    個色胺酸在靠近蛋白N 端的位置,而色胺酸在完全暴露於溶劑當中
    時此蛋白的中間產物仍然有明顯的摺疊部分。因此我們設計了兩個將
    苯丙胺酸和色胺酸相互轉換的突變體以便觀察HP0242 其他區域的折
    疊情形。綜合了利用小角度X 光散射(small angle X-ray scattering) 以
    及動態光散射(dynamic light scattering)所分別觀測到的迴轉半徑
    (radius of gyration)以及水化半徑(radius of hydration)我們確立了
    6
    HP0242 在化學變性的過程中連續的摺疊機制。如今許多的理論模擬
    研究致力於扭結蛋白的摺疊機制的分析,而我們對於HP0242 摺疊機
    制的分析給予模擬研究提供了關鍵的實驗數據。


    Abstract
    To date, about 700 knotted proteins have been identified in the protein data bank
    (PDB). How and why these protein adopt knotted backbone topologies remain elusive.
    HP0242 is a hypothetical protein from Helicolbacter pylori which is homodimeric
    and contains a novel interwined topology (a pseudo trefoil 31 knot); it will be properly
    knotted when two monomers are concatenated. HP0242 is an ideal model system for
    studying knotted protein folding. While far-UV circular dichroism (CD) spectroscopy
    with both in-house and synchrotron radiation light sources identifies the existence of a
    highly populated folding intermediate during chemical denaturation, intrinsic
    fluorescence spectroscopy only probes the native (N) to intermediate (I) state
    transition because HP0242 only has one tryptophan residue and it is likely that the
    local structure around the tryptophan side chain becomes fully solvent exposed while
    a significant part of the structure remains folded in the intermediate state. We
    therefore design two Phe-to-Trp mutants to monitor folding events at the other sites of
    HP0242. Together with small angle X-ray scattering (SAXS) and dynamic light
    scattering (DLS), which report on the changes of radius of gyration (Rg) and radius of
    hydration (Rh), respectively, as a function of denaturant concentration, we have
    established the sequential folding processes of HP0242 during chemical denaturation.
    6
    In light the of the emerging interests in employing theoretical modeling approaches to
    delineate the folding pathways of knotted proteins, our results provide key
    experimental evidence of sequential folding events of HP0242 which can be validated
    in the theoretical models.

    Table of content Abstract ..................................................................................................................................... 5 1. Introduction ....................................................................................................................... 7 1.1. Protein folding problem ........................................................................................... 7 1.2. Topologically knotted proteins .............................................................................. 10 1.3. HP0242 as a model system to study folding of knotted proteins ........................... 11 1.4. Multiparametric biophysical approach for studying unfolding of knotted proteins13 1.4.1. Circular dichroism (CD) spectroscopy .............................................................. 14 1.4.2. Intrinsic fluorescence spectroscopy ................................................................... 17 1.4.3. Radius of gyration (Rg) and radius of hydration (Rh) ........................................ 18 1.5. Three-state folding equilibrium of HP0242 ........................................................... 20 1.6. Folding kinetics of HP0242 ................................................................................... 24 2. Material and methods ...................................................................................................... 27 2.1. Design of HP0242 mutants and their constructions by polymerase chain reaction (PCR) 27 2.2. Purification procedure for HP0242 and it mutants ................................................ 28 2.2.1. His-tag affinity purification ............................................................................... 28 2.2.2. Size-exclusion chromatography ......................................................................... 30 2.3. Far-UV CD and synchrotron radiation circular dichorism (SRCD) spectroscopy . 31 2.4. Intrinsic fluorescence spectroscopy ....................................................................... 31 2.5. Small angle X-ray scattering (SAXS)and dynamic light scattering (DLS) measurements ...................................................................................................................... 32 2.6. Stopped-flow fluorescence measurement for studying protein folding kinetics .... 33 2.7. Data fitting and analysis ......................................................................................... 34 3. Results ............................................................................................................................. 37 3.1. CD and SRCD spectra reveal a highly populated folding intermediate during equilibrium unfolding .......................................................................................................... 37 2 3.2. Tertiary structure information by fluorescence measurement ................................ 40 3.3. Thermodynamics analysis of the chemical denaturation by GdnHCl .................... 42 3.4. Comparison of Rg and Rh monitored by SAXS and DLS ..................................... 50 3.5. Chevron plot analysis of the stopped-flow fluorescence measurements ................ 54 4. Discussion ....................................................................................................................... 57 4.1. HP0242 exhibits a three-state unfolding pathway with a dimeric folding intermediate ......................................................................................................................... 57 4.2. Multiparametric experiment shows that the unfolding pathway of HP0242 is N2→ I2→2D 59 5. Supplementary information ............................................................................................. 63 5.1. DNA map of E. coli expression vectors ................................................................. 63 5.2. Designs of DNA primers of PCR ........................................................................... 63 6. References ....................................................................................................................... 65

    6. References
    1. Nickson, A. A., Wensley, B. G. & Clarke, J. (2012). Take home lessons from
    studies of related proteins. Curr Opin Struct Biol.
    2. Onuchic, J. N. & Wolynes, P. G. (2004). Theory of protein folding. Curr Opin
    Struct Biol 14, 70-5.
    3. Thirumalai, D., Liu, Z., O'Brien, E. P. & Reddy, G. (2012). Protein folding:
    from theory to practice. Curr Opin Struct Biol.
    4. Haran, G. (2012). How, when and why proteins collapse: the relation to
    folding. Curr Opin Struct Biol 22, 14-20.
    5. Tsytlonok, M. & Itzhaki, L. S. (2012). The how's and why's of protein folding
    intermediates. Arch Biochem Biophys.
    6. Gianni, S., Guydosh, N. R., Khan, F., Caldas, T. D., Mayor, U., White, G. W.,
    DeMarco, M. L., Daggett, V. & Fersht, A. R. (2003). Unifying features in
    protein-folding mechanisms. Proc Natl Acad Sci U S A 100, 13286-91.
    7. Aatif, M., Rahman, S. & Bano, B. (2011). Protein unfolding studies of
    thiol-proteinase inhibitor from goat (Capra hircus) muscle in the presence of
    urea and GdnHCl as denaturants. Eur Biophys J 40, 611-7.
    8. Ghosh, G. & Mandal, D. K. (2012). Differing structural characteristics of
    molten globule intermediate of peanut lectin in urea and guanidine-HCl. Int J
    Biol Macromol 51, 188-95.
    9. Singh, K. & Bhakuni, V. (2009). Guanidine hydrochloride- and urea-induced
    unfolding of Toxoplasma gondii ferredoxin-NADP+ reductase: stabilization of
    a functionally inactive holo-intermediate. J Biochem 145, 721-31.
    10. Santucci, R., Sinibaldi, F. & Fiorucci, L. (2008). Protein folding, unfolding
    and misfolding: role played by intermediate States. Mini Rev Med Chem 8,
    57-62.
    11. Baldwin, R. L. (1996). On-pathway versus off-pathway folding intermediates.
    Fold Des 1, R1-8.
    12. Dobson, C. M. (2003). Protein folding and misfolding. Nature 426, 884-90.
    13. Bullock, A. N., Henckel, J. & Fersht, A. R. (2000). Quantitative analysis of
    residual folding and DNA binding in mutant p53 core domain: definition of
    mutant states for rescue in cancer therapy. Oncogene 19, 1245-56.
    14. Mishra, R. & Bhushan, S. (2012). Knot theory in understanding proteins. J
    Math Biol 65, 1187-213.
    15. Mallam, A. L. (2009). How does a knotted protein fold? FEBS J 276, 365-75.
    16. Shakhnovich, E. (2011). Protein folding: To knot or not to knot? Nat Mater 10,
    84-6.
    66
    17. Mallam, A. L. & Jackson, S. E. (2007). A comparison of the folding of two
    knotted proteins: YbeA and YibK. J Mol Biol 366, 650-65.
    18. Mallam, A. L. & Jackson, S. E. (2012). Knot formation in newly translated
    proteins is spontaneous and accelerated by chaperonins. Nat Chem Biol 8,
    147-53.
    19. Prentiss, M. C., Wales, D. J. & Wolynes, P. G. (2010). The energy landscape,
    folding pathways and the kinetics of a knotted protein. PLoS Comput Biol 6,
    e1000835.
    20. Mallam, A. L. & Jackson, S. E. (2006). Probing nature's knots: the folding
    pathway of a knotted homodimeric protein. J Mol Biol 359, 1420-36.
    21. Tsai, J. Y., Chen, B. T., Cheng, H. C., Chen, H. Y., Hsaio, N. W., Lyu, P. C. &
    Sun, Y. J. (2006). Crystal structure of HP0242, a hypothetical protein from
    Helicobacter pylori with a novel fold. Proteins 62, 1138-43.
    22. Clark, P. L. (2004). Protein folding in the cell: reshaping the folding funnel.
    Trends Biochem Sci 29, 527-34.
    23. Rumfeldt, J. A., Galvagnion, C., Vassall, K. A. & Meiering, E. M. (2008).
    Conformational stability and folding mechanisms of dimeric proteins. Prog
    Biophys Mol Biol 98, 61-84.
    24. Hoffmann-Thoms, S. & Schmid, F. X. (2012). A kinetic approach to
    determining the conformational stability of a protein that dimerizes after
    folding. Biochemistry 51, 3948-56.
    25. King, N. P., Jacobitz, A. W., Sawaya, M. R., Goldschmidt, L. & Yeates, T. O.
    (2010). Structure and folding of a designed knotted protein. Proc Natl Acad
    Sci U S A 107, 20732-7.
    26. Sulkowska, J. I., Noel, J. K. & Onuchic, J. N. (2012). Energy landscape of
    knotted protein folding. Proc Natl Acad Sci U S A 109, 17783-8.
    27. Walters, J., Milam, S. L. & Clark, A. C. (2009). Practical approaches to protein
    folding and assembly: spectroscopic strategies in thermodynamics and kinetics.
    Methods Enzymol 455, 1-39.
    28. Wu, X. L., Wang, W. P., Xia, L. X., Xu, H., Wu, H. & Liu, Z. G. (2012). In
    vitro refolding process of bovine allergen beta-lactoglobulin by
    Multispectroscopic method. Biomed Environ Sci 25, 334-9.
    29. Johnson, W. C., Jr. (1990). Protein secondary structure and circular dichroism:
    a practical guide. Proteins 7, 205-14.
    30. Woody, R. W., Sugeta, H. & Kodama, T. S. (1996). [Circular dichroism of
    proteins: recent developments in analysis and prediction]. Tanpakushitsu
    Kakusan Koso 41, 56-69.
    31. Hennessey, J. P., Jr. & Johnson, W. C., Jr. (1981). Information content in the
    67
    circular dichroism of proteins. Biochemistry 20, 1085-94.
    32. Woody, R. W. (2004). Circular dichroism of protein-folding intermediates.
    Methods Enzymol 380, 242-85.
    33. Clarke, D. T. (2012). Circular dichroism in protein folding studies. Curr
    Protoc Protein Sci Chapter 28, Unit28 3.
    34. Hussain, R., Javorfi, T. & Siligardi, G. (2012). Circular dichroism beamline
    B23 at the Diamond Light Source. J Synchrotron Radiat 19, 132-5.
    35. Miles, A. J. & Wallace, B. A. (2006). Synchrotron radiation circular dichroism
    spectroscopy of proteins and applications in structural and functional
    genomics. Chem Soc Rev 35, 39-51.
    36. Wallace, B. A. & Janes, R. W. (2001). Synchrotron radiation circular
    dichroism spectroscopy of proteins: secondary structure, fold recognition and
    structural genomics. Curr Opin Chem Biol 5, 567-71.
    37. Wallace, B. A. (2009). Protein characterisation by synchrotron radiation
    circular dichroism spectroscopy. Q Rev Biophys 42, 317-70.
    38. Sreerama, N., Venyaminov, S. Y. & Woody, R. W. (2000). Estimation of
    protein secondary structure from circular dichroism spectra: inclusion of
    denatured proteins with native proteins in the analysis. Anal Biochem 287,
    243-51.
    39. Sreerama, N. & Woody, R. W. (2000). Estimation of protein secondary
    structure from circular dichroism spectra: comparison of CONTIN, SELCON,
    and CDSSTR methods with an expanded reference set. Anal Biochem 287,
    252-60.
    40. Royer, C. A. (1995). Approaches to teaching fluorescence spectroscopy.
    Biophys J 68, 1191-5.
    41. Ayuso-Tejedor, S., Garcia-Fandino, R., Orozco, M., Sancho, J. & Bernado, P.
    (2011). Structural analysis of an equilibrium folding intermediate in the
    apoflavodoxin native ensemble by small-angle X-ray scattering. J Mol Biol
    406, 604-19.
    42. Konuma, T., Kimura, T., Matsumoto, S., Goto, Y., Fujisawa, T., Fersht, A. R.
    & Takahashi, S. (2011). Time-resolved small-angle X-ray scattering study of
    the folding dynamics of barnase. J Mol Biol 405, 1284-94.
    43. Proteau, A., Shi, R. & Cygler, M. (2010). Application of dynamic light
    scattering in protein crystallization. Curr Protoc Protein Sci Chapter 17, Unit
    17 10.
    44. Banachewicz, W., Religa, T. L., Schaeffer, R. D., Daggett, V. & Fersht, A. R.
    (2011). Malleability of folding intermediates in the homeodomain superfamily.
    Proc Natl Acad Sci U S A 108, 5596-601.
    68
    45. Vallee-Belisle, A. & Michnick, S. W. (2012). Visualizing transient
    protein-folding intermediates by tryptophan-scanning mutagenesis. Nat Struct
    Mol Biol 19, 731-6.
    46. Englander, S. W., Mayne, L. & Krishna, M. M. (2007). Protein folding and
    misfolding: mechanism and principles. Q Rev Biophys 40, 287-326.
    47. Morris, E. R. & Searle, M. S. (2012). Overview of protein folding mechanisms:
    experimental and theoretical approaches to probing energy landscapes. Curr
    Protoc Protein Sci Chapter 28, Unit 28 2 1-22.
    48. Mallam, A. L., Morris, E. R. & Jackson, S. E. (2008). Exploring knotting
    mechanisms in protein folding. Proc Natl Acad Sci U S A 105, 18740-5.
    49. Sancho, J. (2013). The stability of 2-state, 3-state and more-state proteins from
    simple spectroscopic techniques... plus the structure of the equilibrium
    intermediates at the same time. Arch Biochem Biophys 531, 4-13.
    50. Li, X. Y., Li, N., Luo, H. D., Lin, L. R., Zou, Z. X., Jia, Y. Z. & Li, Y. Q.
    (2011). A novel synchronous fluorescence spectroscopic approach for the
    rapid determination of three polycyclic aromatic hydrocarbons in tea with
    simple microwave-assisted pretreatment of sample. J Agric Food Chem 59,
    5899-905.
    51. Myers, J. K., Pace, C. N. & Scholtz, J. M. (1995). Denaturant m values and
    heat capacity changes: relation to changes in accessible surface areas of
    protein unfolding. Protein Sci 4, 2138-48.
    52. Roder, H. & Colon, W. (1997). Kinetic role of early intermediates in protein
    folding. Curr Opin Struct Biol 7, 15-28.
    53. Sulkowska, J. I., Sulkowski, P., Szymczak, P. & Cieplak, M. (2008).
    Stabilizing effect of knots on proteins. Proc Natl Acad Sci U S A 105, 19714-9.
    54. Sayre, T. C., Lee, T. M., King, N. P. & Yeates, T. O. (2011). Protein
    stabilization in a highly knotted protein polymer. Protein Eng Des Sel 24,
    627-30.
    55. Ivarsson, Y., Travaglini-Allocatelli, C., Brunori, M. & Gianni, S. (2008).
    Folding and misfolding in a naturally occurring circularly permuted PDZ
    domain. J Biol Chem 283, 8954-60.
    56. Jemth, P., Johnson, C. M., Gianni, S. & Fersht, A. R. (2008). Demonstration
    by burst-phase analysis of a robust folding intermediate in the FF domain.
    Protein Eng Des Sel 21, 207-14.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE