研究生: |
胡越勝 HO, VIET THANG |
---|---|
論文名稱: |
開發具抗癌藥物傳輸與核磁共振顯影之多功能環境應答接枝共聚合高分子自組裝系統 Multifunctional and Stimuli-Responsive Cross-linked Polymeric Assemblies from PAAc-based Graft Copolymers for Anticancer Agent Delivery and Magnetic Resonance Imaging |
指導教授: |
邱信程
Chiu, Hsin-Cheng |
口試委員: |
張建文
Chien-Wen Chang 駱俊良 Chun-Liang Lo |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 73 |
中文關鍵詞: | 酸鹼/溫度應答 、高分子液胞組裝 |
外文關鍵詞: | pH-and Thermo-response, Polymer vesicles assemblies |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,於 pH 3.0 溶液中, poly(acrylic acid-co-2-methacryloylethyl acrylate)-g- poly(N-isopropylacrylamide) (poly(AAc-co-MEA)-g-PNIPAAm) (Copolymer A)及 poly(acrylic acid-co-2-methacryloylethyl acrylate)-g- poly(N-isopropylacrylamide)-g-monomethoxy poly(ethylene glycol) (poly(AAc-co-MEA)-g-PNIPAAm-g-mPEG) (Copolymer B)藉由未解離 的 AAc 單元與 NIPAAm 單元形成氫鍵,進而自組裝形成高分子液胞結構。高分子液胞膜 中的 MEA 單元進一步以光起始法進行交聯。此外,可藉由改變溶液的酸鹼值或溫度調控
交聯式高分子液胞組裝的結構。抗癌藥物 Doxorubicin (DOX)為一正電荷分子,其與液胞 上解離的 AAc 單元形成複合(Complexation)並與 NIPAAm 單元形成氫鍵,以達到高效率的
藥物包覆。由體外藥物釋放、細胞吞噬及細胞毒性測試結果可知,含 DOX 的高分子液胞 可於 HeLa 細胞內的酸性環境(如 lysosomes)中快速釋放藥物,以提高毒殺腫瘤細胞的效
果。上述結果顯示,此具酸鹼/溫度應答之高分子液胞組裝極具潛力應用於胞內的藥物傳 遞系統。
另一方面,Copolymer B 中未解離的 AAc 單元與檸檬酸化的奈米氧化鐵粒子(citric acid-modified iron oxide nanoparticles, IOPs)於 pH 3.0 溶液中會形成氫鍵,再於 60oC 下使 MEA 單元聚合,而得到 copolymer-caged IOPs (CCIOPs)。此交聯式 CCIOPs 的粒徑為 200
nm 並具有超順磁特性。此外,其藥物包覆率高達 88.3%,且具酸鹼應答的藥物釋放行 為。值得注意地,藉由改變酸鹼值,交聯式 CCIOPs 的橫向鬆弛率(r 2 )可被顯著的提升。交
聯式 CCIOPs 被 HeLa 細胞吞噬後(經由 endocytosis),於 MR 影像中仍顯示為 dark imaging。此交聯式 CCIOPs 的體外細胞毒性測試結果顯示此載體可作為腫瘤細胞的診治平 台。
In this study, stimuli-responsive polymersomes were developed from spontaneous co-association of two graft copolymers both comprising acrylic acid (AAc) and 2-methacryloylethyl acrylate (MEA) units as the backbone and either poly(N-isopropylacrylamide) (PNIPAAm) alone (copolymer A) or both PNIPAAm and monomethoxy poly(ethylene glycol) (mPEG) chain segments as the grafts (copolymer B) via hydrogen bonding of unionized AAc with NIPAAm moieties with medium pH being
lowered from 7.4 to 3.0 at 25 oC. The PAAc/PNIPAAm-rich hydrophobic membranes of polymersomes were further cross-linked upon photo-initiated radical polymerization of
the MEA units. The cross-linked (CL) polymersomes exhibited an obvious structural regulation in response to changes in external pH and temperature. In addition, through hydrophobic AAc/doxorubicin (DOX) complexes formed via complementary electrostatic
attraction of DOX molecules with ionized AAc residues and then stabilized by hydrogen bonding between DOX and PNIPAAm, DOX was successfully encapsulated into CL
polymersomes. These results of in vitro drug release, cellular uptake and cytotoxicity indicate that after being internalized by HeLa cells via endocytosis, DOX-loaded CL polymersomes are capable of releasing rapidly drug within acidic endosomes and lysosomes upon extensive disruption of the originally formed electrostatic attraction and hydrogen bonding, thereby resulting in a high intracellular drug concentration to maintain therapeutic efficacy for anticancer treatment. Therefore, such polymersomes with pH- and thermo-responsive CL membranes show great potentiality of effective intracellular DOX delivery.
On the other hand, to develop multifunctional polymeric assemblies for drug delivery and enhanced MR imaging, through co-association of citric acid-modified iron oxide nanoparticles (IOPs) with copolymer B via extensive hydrogen bonding of
unionized carboxyl acid and NIPAAm residues with medium pH being adjusted from pH 7.4 to pH 3.0, the copolymer-caged IOPs (CCIOPs) were attained and then cross-linked
upon photo-initiated radical polymerization of the MEA units. The obtained cross-linked (CL) CCIOPs have a particles size of ca. 200 nm in diameter and superparamagnetic property. Moreover, the CL CCIOPs with a high DOX payload (ca. 88.3 %) exhibit superior pH-controlled drug release profiles. Interestingly enough, the transverse relaxivity (r 2 ) of the CL CCIOPs was appreciably enhanced and changed by varying external solution pH. After being internalized by HeLa cells via endocytosis, the CL
CCIOPs still showed significantly dark images. The results of in vitro cytotoxicity of CL CCIOPs further illustrate their potential application as a theranostic platform.
[1] F. Meng, Z. Zhong, J. Feijen, Stimuli-responsive polymersomes for programmed drug delivery, Biomacromolecules, 10 (2009) 197-209.
[2] D.E. Discher, A. Eisenberg, Polymer vesicles, Science, 297 (2002) 967-973.
[3] B.M. Discher, Y.Y. Won, D.S. Ege, J.C. Lee, F.S. Bates, D.E. Discher, D.A. Hammer, Polymersomes: tough vesicles made from diblock copolymers, Science, 284 (1999) 1143-1146.
[4] H.C. Chiu, Y.W. Lin, Y.F. Huang, C.K. Chuang, C.S. Chern, Polymer vesicles containing small vesicles within interior aqueous compartments and pH-Responsive transmembrane channels, Angew Chem Int Edit, 47 (2008) 1875-1878.
[5] Y. Li, B.S. Lokitz, C.L. McCormick, Thermally responsive vesicles and their structural "locking" through polyelectrolyte complex formation, Angew Chem Int Ed Engl, 45 (2006) 5792-5795.
[6] K.N. Power-Billard, R.J. Spontak, I. Manners, Redox-active organometallic vesicles: aqueous self-assembly of a diblock copolymer with a hydrophilic polyferrocenylsilane polyelectrolyte block, Angew Chem Int Ed Engl, 43 (2004) 1260-1264.
[7] Y. Zhao, X. Tong, G. Wang, A. Soldera, How can azobenzene block copolymer vesicles be dissociated and reformed by light?, Journal of Physical Chemistry B, 109 (2005) 20281-20287.
[8] S.B. Lecommandoux, O. Sandre, F. Checot, J. Rodriguez-Hernandez, R. Perzynski, Magnetic nanocomposite micelles and vesicles, Adv Mater, 17 (2005) 712-+.
[9] R.C. MacDonald, S.L. Huang, A.J. Hamilton, E. Pozharski, A. Nagaraj, M.E. Klegerman, D.D. McPherson, Physical correlates of the ultrasonic reflectivity of lipid dispersions suitable as diagnostic contrast agents, Ultrasound Med Biol, 28 (2002) 339-348.
[10] D. Schmaljohann, Thermo- and pH-responsive polymers in drug delivery, Adv Drug Deliver Rev, 58 (2006) 1655-1670.
[11] X.Z. Zhang, Y.Y. Li, H. Cheng, J.L. Zhu, L. Yuan, Y. Dai, S.X. Cheng, R.X. Zhuo, Temperature- and pH-Sensitive Multicolored Micellar Complexes, Adv Mater, 21 (2009) 2402-+.
[12] W.Y. Chiu, C.L. Lin, C.F. Lee, Thermal/pH-sensitive core-shell copolymer latex and its potential for targeting drug carrier application, Polymer, 46 (2005) 10092-10101.
[13] L.S. Zha, Q.S. Zhang, J.H. Ma, B.R. Liang, A novel route to prepare pH- and temperature-sensitive nanogels via a semibatch process, J Colloid Interf Sci, 330 (2009) 330-336.
[14] N. Rapoport, Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery, Prog Polym Sci, 32 (2007) 962-990.
[15] M. Amiji, S. Ganta, H. Devalapally, A. Shahiwala, A review of stimuli-responsive nanocarriers for drug and gene delivery, J Control Release, 126 (2008) 187-204.
[16] X.Z. Zhang, Y.Y. Li, H. Cheng, G.C. Kim, S.X. Cheng, R.X. Zhuo, Novel stimuli-responsive micelle self-assembled from Y-shaped P(UA-Y-NIPAAm) copolymer for drug delivery, Biomacromolecules, 7 (2006) 2956-2960.
[17] T.K. Bronich, P.A. Keifer, L.S. Shlyakhtenko, A.V. Kabanov, Polymer micelle with cross-linked ionic core, J Am Chem Soc, 127 (2005) 8236-8237.
[18] M. Maskos, O. Rheingans, N. Hugenberg, J.R. Harris, K. Fischer, Nanoparticles built of cross-linked heterotelechelic, amphiphilic poly(dimethylsiloxane)-b-poly(ethylene oxide) diblock copolymers, Macromolecules, 33 (2000) 4780-4790.
[19] C.J. Hawker, R.K. O'Reilly, M.J. Joralemon, K.L. Wooley, Preparation of orthogonally-functionalized core Click cross-linked nanoparticles, New J Chem, 31 (2007) 718-724.
[20] S.Y. Liu, J.Y. Zhang, X. Jiang, Y.F. Zhang, Y.T. Li, Facile fabrication of reversible core cross-linked micelles possessing thermosensitive swellability, Macromolecules, 40 (2007) 9125-9132.
[21] S.P. Armes, S.Y. Liu, J.V.M. Weaver, M. Save, Synthesis of pH-responsive shell cross-linked micelles and their use as nanoreactors for the preparation of gold nanoparticles, Langmuir, 18 (2002) 8350-8357.
[22] R.K. O'Reilly, A.D. Ievins, X.F. Wang, A.O. Moughton, J. Skey, Synthesis of core functionalized polymer micelles and shell cross-linked nanoparticles, Macromolecules, 41 (2008) 2998-3006.
[23] K.L. Wooley, Q. Zhang, E.E. Remsen, Shell cross-linked nanoparticles containing hydrolytically degradable, crystalline core domains, J Am Chem Soc, 122 (2000) 3642-3651.
[24] J.J. Moon, H. Suh, A. Bershteyn, M.T. Stephan, H.P. Liu, B. Huang, M. Sohail, S. Luo, S.H. Um, H. Khant, J.T. Goodwin, J. Ramos, W. Chiu, D.J. Irvine, Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses, Nat Mater, 10 (2011) 243-251.
[25] D.E. Discher, B.M. Discher, H. Bermudez, D.A. Hammer, Y.Y. Won, F.S. Bates, Cross-linked polymersome membranes: Vesicles with broadly adjustable properties, Journal of Physical Chemistry B, 106 (2002) 2848-2854.
[26] X.B. Ding, X.R. Chen, Z.H. Zheng, Y.X. Peng, Thermosensitive cross-linked polymer vesicles for controlled release system, New J Chem, 30 (2006) 577-582.
[27] Y.M. Chen, M. Xiong, M. Maskos, Functionalization of crosslinked vesicles by co-self-assembly of a gelable diblock copolymer and mercaptosilane, Macromol Rapid Comm, 29 (2008) 1368-1371.
[28] M.H. Stenzel, M. Hales, C. Barner-Kowollik, T.P. Davis, Shell-cross-linked vesicles synthesized from block copolymers of poly(D,L-lactide) and poly (N-isopropyl acrylamide) as thermoresponsive nanocontainers, Langmuir, 20 (2004) 10809-10817.
[29] R. Murali, D.H. Levine, P.P. Ghoroghchian, J. Freudenberg, G. Zhang, M.J. Therien, M.I. Greene, D.A. Hammer, Polymersomes: A new multi-functional tool for cancer diagnosis and therapy, Methods, 46 (2008) 25-32.
[30] D.E. Discher, F. Ahmed, R.I. Pakunlu, A. Brannan, F. Bates, T. Minko, Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug, J Control Release, 116 (2006) 150-158.
[31] Y. Geng, P. Dalhaimer, S.S. Cai, R. Tsai, M. Tewari, T. Minko, D.E. Discher, Shape effects of filaments versus spherical particles in flow and drug delivery, Nat Nanotechnol, 2 (2007) 249-255.
[32] Y.M. Chen, J.Z. Du, Y.H. Zhang, C.C. Han, K. Fischer, M. Schmidt, Organic/inorganic hybrid vesicles based on a reactive block copolymer, J Am Chem Soc, 125 (2003) 14710-14711.
[33] R.K. O'Reilly, J.Z. Du, Advances and challenges in smart and functional polymer vesicles, Soft Matter, 5 (2009) 3544-3561.
[34] B.B.C. Youan, D. Bei, J.N. Meng, Engineering nanomedicines for improved melanoma therapy: progress and promises, Nanomedicine-Uk, 5 (2010) 1385-1399.
[35] J.A. Ji, G.Y. Liu, Q.A. Jin, X.S. Liu, L.P. Lv, C.J. Chen, Biocompatible vesicles based on PEO-b-PMPC/alpha-cyclodextrin inclusion complexes for drug delivery, Soft Matter, 7 (2011) 662-669.
[36] D.E. Discher, S.H. Qin, Y. Geng, S. Yang, Temperature-controlled assembly and release from polymer vesicles of poly(ethylene oxide)-block-poly(N-isopropylacrylamide), Adv Mater, 18 (2006) 2905-+.
[37] A. Napoli, M.J. Boerakker, N. Tirelli, R.J.M. Nolte, N.A.J.M. Sommerdijk, J.A. Hubbell, Glucose-oxidase based self-destructing polymeric vesicles, Langmuir, 20 (2004) 3487-3491.
[38] J.D. Kim, H.J. Lee, S.R. Yang, E.J. An, Biodegradable polymersomes from poly(2-hydroxyethyl aspartamide) grafted with lactic acid oligomers in aqueous solution, Macromolecules, 39 (2006) 4938-4940.
[39] Y.F. Zhou, Z.Q. Shi, D.Y. Yan, Facile fabrication of pH-responsive and size-controllable polymer vesicles from a commercially available hyperbranched polyester, Macromol Rapid Comm, 29 (2008) 412-418.
[40] R.K. O'Reilly, C.J. Hawker, K.L. Wooley, Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility, Chem Soc Rev, 35 (2006) 1068-1083.
[41] I. Manners, X.S. Wang, G. Guerin, H. Wang, Y.S. Wang, M.A. Winnik, Cylindrical block copolymer micelles and co-micelles of controlled length and architecture, Science, 317 (2007) 644-647.
[42] L.F. Zhang, A. Eisenberg, Multiple morphologies and characteristics of ''crew-cut'' micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions, J Am Chem Soc, 118 (1996) 3168-3181.
[43] M.A.C. Stuart, I.K. Voets, A. de Keizer, P. de Waard, P.M. Frederik, P.H.H. Bomans, H. Schmalz, A. Walther, S.M. King, F.A.M. Leermakers, Double-faced micelles from water-soluble polymers, Angew Chem Int Edit, 45 (2006) 6673-6676.
[44] D.J. Pochan, Z.Y. Chen, H.G. Cui, K. Hales, K. Qi, K.L. Wooley, Toroidal triblock copolymer assemblies, Science, 306 (2004) 94-97.
[45] A. Eisenberg, P.L. Soo, Preparation of block copolymer vesicles in solution, J Polym Sci Pol Phys, 42 (2004) 923-938.
[46] R.J.M. Nolte, D.M. Vriezema, M.C. Aragones, J.A.A.W. Elemans, J.J.L.M. Cornelissen, A.E. Rowan, Self-assembled nanoreactors, Chem Rev, 105 (2005) 1445-1489.
[47] D.E. Discher, F. Ahmed, Polymersomes, Annu Rev Biomed Eng, 8 (2006) 323-341.
[48] X.H. He, F. Schmid, Dynamics of spontaneous vesicle formation in dilute solutions of amphiphilic diblock copolymers, Macromolecules, 39 (2006) 2654-2662.
[49] E.S. Lee, Z.G. Gao, Y.H. Bae, Recent progress in tumor pH targeting nanotechnology, J Control Release, 132 (2008) 164-170.
[50] K. Engin, D.B. Leeper, J.R. Cater, A.J. Thistlethwaite, L. Tupchong, J.D. Mcfarlane, Extracellular Ph Distribution in Human Tumors, Int J Hyperther, 11 (1995) 211-216.
[51] J.Z. Du, Y.P. Tang, A.L. Lewis, S.P. Armes, pH-sensitive vesicles based on a biocompatible zwitterionic diblock copolymer, J Am Chem Soc, 127 (2005) 17982-17983.
[52] M. Krack, H. Hohenberg, A. Kornowski, P. Lindner, H. Weller, S. Forster, Nanoparticle-loaded magnetophoretic vesicles, J Am Chem Soc, 130 (2008) 7315-7320.
[53] C. Alvarez-Lorenzo, L. Bromberg, A. Concheiro, Light-sensitive Intelligent Drug Delivery Systems, Photochem Photobiol, 85 (2009) 848-860.
[54] X. Jiang, C.A. Lavender, J.W. Woodcock, B. Zhao, Multiple micellization and dissociation transitions of thermo- and light-sensitive poly(ethylene oxide)-b-poly(ethoxytri(ethylene glycol) acrylate-co-o-nitrobenzyl acrylate) in water, Macromolecules, 41 (2008) 2632-2643.
[55] C. Park, J. Lim, M. Yun, C. Kim, Photoinduced release of guest molecules by supramolecular transformation of self-assembled aggregates derived from dendrons, Angew Chem Int Edit, 47 (2008) 2959-2963.
[56] T.H. Yu, S.G. Li, J. Zhao, T.J. Mason, Ultrasound: A chemotherapy sensitizer, Technol Cancer Res T, 5 (2006) 51-60.
[57] S.L. Huang, A.J. Hamilton, E. Pozharski, A. Nagaraj, M.E. Klegerman, D.D. McPherson, R.C. MacDonald, Physical correlates of the ultrasonic reflectivity of lipid dispersions suitable as diagnostic contrast agents, Ultrasound Med Biol, 28 (2002) 339-348.
[58] P.J. Gaillard, A.G. de Boer, A novel opportunity for targeted drug delivery to the brain, J Control Release, 116 (2006) e60-62.
[59] U.S. Sharma, S.V. Balasubramanian, R.M. Straubinger, Pharmaceutical and physical properties of paclitaxel (Taxol) complexes with cyclodextrins, J Pharm Sci, 84 (1995) 1223-1230.
[60] S.L. Li, B. Byrne, J. Welsh, A.F. Palmer, Self-assembled poly(butadiene)-b-poly(ethylene oxide) polymersomes as paclitaxel carriers, Biotechnol Progr, 23 (2007) 278-285.
[61] C. Perez, I.J. Castellanos, H.R. Costantino, W. Al-Azzam, K. Griebenow, Recent trends in stabilizing protein structure upon encapsulation and release from bioerodible polymers, J Pharm Pharmacol, 54 (2002) 301-313.
[62] S. Parveen, S.K. Sahoo, Nanomedicine: clinical applications of polyethylene glycol conjugated proteins and drugs, Clin Pharmacokinet, 45 (2006) 965-988.
[63] A. Wittemann, T. Azzam, A. Eisenberg, Biocompatible polymer vesicles from biamphiphilic triblock copolymers and their interaction with bovine serum albumin, Langmuir, 23 (2007) 2224-2230.
[64] A. Napoli, M. Valentini, N. Tirelli, M. Muller, J.A. Hubbell, Oxidation-responsive polymeric vesicles, Nat Mater, 3 (2004) 183-189.
[65] H. Lomas, I. Canton, S. MacNeil, J. Du, S.P. Armes, A.J. Ryan, A.L. Lewis, G. Battaglia, Biomimetic pH sensitive polymersomes for efficient DNA encapsulation and delivery, Adv Mater, 19 (2007) 4238-+.
[66] H. Lomas, M. Massignani, K.A. Abdullah, I. Canton, C. Lo Presti, S. MacNeil, J.Z. Du, A. Blanazs, J. Madsen, S.P. Armes, A.L. Lewis, G. Battaglia, Non-cytotoxic polymer vesicles for rapid and efficient intracellular delivery, Faraday Discuss, 139 (2008) 143-159.
[67] O.H. Pomeroy, M. Wendland, S. Wagner, N. Derugin, W.W. Holt, S.M. Rocklage, S. Quay, C.B. Higgins, Magnetic-Resonance Imaging of Acute Myocardial Ischemia Using a Manganese Chelate, Mn-Dpdp, Invest Radiol, 24 (1989) 531-536.
[68] M. Marotti, U. Schmiedl, D. White, E. Ramos, T. Johnson, B. Engelstad, Metal-Chelates as Urographic Contrast Agents for Magnetic-Resonance-Imaging - a Comparative-Study, Fortschr Rontg Neuen, 146 (1987) 89-93.
[69] C. Sanson, O. Diou, J. Thevenot, E. Ibarboure, A. Soum, A. Brulet, S. Miraux, E. Thiaudiere, S. Tan, A. Brisson, V. Dupuis, O. Sandre, S. Lecommandoux, Doxorubicin Loaded Magnetic Polymersomes: Theranostic Nanocarriers for MR Imaging and Magneto-Chemotherapy, Acs Nano, 5 (2011) 1122-1140.
[70] X.Q. Yang, J.J. Grailer, I.J. Rowland, A. Javadi, S.A. Hurley, V.Z. Matson, D.A. Steeber, S.Q. Gong, Multifunctional Stable and pH-Responsive Polymer Vesicles Formed by Heterofunctional Triblock Copolymer for Targeted Anticancer Drug Delivery and Ultrasensitive MR Imaging, Acs Nano, 4 (2010) 6805-6817.
[71] S.A. Anderson, R.K. Rader, W.F. Westlin, C. Null, D. Jackson, G.M. Lanza, S.A. Wickline, J.J. Kotyk, Magnetic resonance contrast enhancement of neovasculature with alpha(v)beta(3)-targeted nanoparticles, Magn Reson Med, 44 (2000) 433-439.
[72] B. Polyak, G. Friedman, Magnetic targeting for site-specific drug delivery: applications and clinical potential, Expert Opin Drug Deliv, 6 (2009) 53-70.
[73] F. Gazeau, M. Levy, C. Wilhelm, Optimizing magnetic nanoparticle design for nanothermotherapy, Nanomedicine-Uk, 3 (2008) 831-844.
[74] H.Z. Jin, K.A. Kang, Application of novel metal nanoparticles as optical/thermal agents in optical mammography and hyperthermic treatment for breast cancer, Adv Exp Med Biol, 599 (2007) 45-52.
[75] R. Massart, E. Dubois, V. Cabuil, E. Hasmonay, Preparation and Properties of Monodisperse Magnetic Fluids, J Magn Magn Mater, 149 (1995) 1-5.
[76] S.F. Medeiros, A.M. Santos, H. Fessi, A. Elaissari, Stimuli-responsive magnetic particles for biomedical applications, Int J Pharm, 403 (2011) 139-161.
[77] A.H. Lu, E.L. Salabas, F. Schuth, Magnetic nanoparticles: Synthesis, protection, functionalization, and application, Angew Chem Int Edit, 46 (2007) 1222-1244.
[78] S.R. Dave, X.H. Gao, Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery: a versatile and evolving technology, Wires Nanomed Nanobi, 1 (2009) 583-609.
[79] R. Hao, R.J. Xing, Z.C. Xu, Y.L. Hou, S. Gao, S.H. Sun, Synthesis, Functionalization, and Biomedical Applications of Multifunctional Magnetic Nanoparticles, Adv Mater, 22 (2010) 2729-2742.
[80] H.C. Chiu, W.H. Chiang, Y.H. Hsu, T.W. Lou, C.S. Chern, Effects of mPEG Grafts on Morphology and Cross-Linking of Thermally Induced Micellar Assemblies from PAAc-Based Graft Copolymers in Aqueous Phase, Macromolecules, 42 (2009) 3611-3619.
[81] W.H. Chiang, Y.H. Hsu, Y.W. Chen, C.S. Chern, H.C. Chiu, Thermoresponsive Interpolymeric Complex Assemblies from Co-association of Linear PAAc Homopolymers with PNIPAAm Segments Containing PAAc-Based Graft Copolymer, Macromol Chem Phys, 212 (2011) 1869-1878.
[82] S. Wan, M. Jiang, G.Z. Zhang, Dual temperature- and pH-dependent self-assembly of cellulose-based copolymer with a pair of complementary grafts, Macromolecules, 40 (2007) 5552-5558.
[83] G.H. Chen, A.S. Hoffman, Graft-Copolymers That Exhibit Temperature-Induced Phase-Transitions over a Wide-Range of Ph, Nature, 373 (1995) 49-52.
[84] Y.F. Huang, W.H. Chiang, P.L. Tsai, C.S. Chern, H.C. Chiu, Novel hybrid vesicles co-assembled from a cationic lipid and PAAc-g-mPEG with pH-triggered transmembrane channels for controlled drug release, Chem Commun, 47 (2011) 10978-10980.
[85] A.E. Smith, X.W. Xu, S.E. Kirkland-York, D.A. Savin, C.L. McCormick, "Schizophrenic" Self-Assembly of Block Copolymers Synthesized via Aqueous RAFT Polymerization: From Micelles to Vesicles, Macromolecules, 43 (2010) 1210-1217.
[86] H.J. Dou, M. Jiang, H.S. Peng, D.Y. Chen, Y. Hong, pH-dependent self-assembly: Micellization and micelle-hollow-sphere transition of cellulose-based copolymers, Angew Chem Int Edit, 42 (2003) 1516-1519.
[87] W.M. Wan, X.L. Sun, C.Y. Pan, Morphology Transition in RAFT Polymerization for Formation of Vesicular Morphologies in One Pot, Macromolecules, 42 (2009) 4950-4952.
[88] W.H. Chiang, Y.H. Hsu, F.F. Tang, C.S. Chern, H.C. Chiu, Temperature/pH-induced morphological regulations of shell cross-linked graft copolymer assemblies, Polymer, 51 (2010) 6248-6257.
[89] Y.W. Zhang, M. Jiang, J.X. Zhao, Z.X. Wang, H.J. Dou, D.Y. Chen, PH-responsive core-shell particles and hollow spheres attained by macromolecular self-assembly, Langmuir, 21 (2005) 1531-1538.
[90] G.Y. Li, L.Q. Shi, Y.L. An, W.Q. Zhang, R.J. Ma, Double-responsive core-shell-corona micelles from self-assembly of diblock copolymer of poly(t-butyl acrylate-co-acrylic acid)-b-poly (N-isopropylacrylamide), Polymer, 47 (2006) 4581-4587.
[91] Y. Tian, L. Bromberg, S.N. Lin, T.A. Hatton, K.C. Tam, Complexation and release of doxorubicin from its complexes with pluronic P85-b-poly(acrylic acid) block copolymers, J Control Release, 121 (2007) 137-145.
[92] M.K. Yu, Y.Y. Jeong, J. Park, S. Park, J.W. Kim, J.J. Min, K. Kim, S. Jon, Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo, Angew Chem Int Edit, 47 (2008) 5362-5365.
[93] S. Purushotham, R.V. Ramanujan, Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy, Acta Biomater, 6 (2010) 502-510.
[94] X.Q. Yang, J.J. Grailer, I.J. Rowland, A. Javadi, S.A. Hurley, D.A. Steeber, S.Q. Gong, Multifunctional SPIO/DOX-loaded wormlike polymer vesicles for cancer therapy and MR imaging, Biomaterials, 31 (2010) 9065-9073.
[95] X. Shuai, H. Ai, N. Nasongkla, S. Kim, J. Gao, Micellar carriers based on block copolymers of poly(epsilon-caprolactone) and poly(ethylene glycol) for doxorubicin delivery, J Control Release, 98 (2004) 415-426.
[96] D.L. Wang, Y. Su, C.Y. Jin, B.S. Zhu, Y. Pang, L.J. Zhu, J.Y. Liu, C.L. Tu, D.Y. Yan, X.Y. Zhu, Supramolecular Copolymer Micelles Based on the Complementary Multiple Hydrogen Bonds of Nucleobases for Drug Delivery, Biomacromolecules, 12 (2011) 1370-1379.
[97] W.L. Zhang, Y.L. Li, L.X. Liu, Q.Q. Sun, X.T. Shuai, W. Zhu, Y.M. Chen, Amphiphilic Toothbrushlike Copolymers Based on Poly(ethylene glycol) and Poly(epsilon-caprolactone) as Drug Carriers with Enhanced Properties, Biomacromolecules, 11 (2010) 1331-1338.
[98] S. Aryal, C.M.J. Hu, L.F. Zhang, Polymer-Cisplatin Conjugate Nanoparticles for Acid-Responsive Drug Delivery, Acs Nano, 4 (2010) 251-258.
[99] Y. Sahoo, A. Goodarzi, M.T. Swihart, T.Y. Ohulchanskyy, N. Kaur, E.P. Furlani, P.N. Prasad, Aqueous ferrofluid of magnetite nanoparticles: Fluorescence labeling and magnetophoretic control, J Phys Chem B, 109 (2005) 3879-3885.
[100] P.W. Lee, S.H. Hsu, J.J. Wang, J.S. Tsai, K.J. Lin, S.P. Wey, F.R. Chen, C.H. Lai, T.C. Yen, H.W. Sung, The characteristics, biodistribution, magnetic resonance imaging and biodegradability of superparamagnetic core-shell nanoparticles, Biomaterials, 31 (2010) 1316-1324.
[101] C. Paquet, H.W. de Haan, D.M. Leek, H.Y. Lin, B. Xiang, G.H. Tian, A. Kell, B. Simard, Clusters of Superparamagnetic Iron Oxide Nanoparticles Encapsulated in a Hydrogel: A Particle Architecture Generating a Synergistic Enhancement of the T(2) Relaxation, Acs Nano, 5 (2011) 3104-3112.