簡易檢索 / 詳目顯示

研究生: 歐洋
Ou, Yang
論文名稱: 二氧化鈦/多壁奈米鈦管之電磁波屏蔽性質研究
Study on electromagnetic-Interference Shielding on multi-walled Carbon Nanotube/Titanium Dioxide Composites
指導教授: 徐文光
Hsu, Wen-Kuang
口試委員: 許景棟
Hsu, Ching-Tung
呂昇益
Lu, Sheng-Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 56
中文關鍵詞: 奈米碳管二氧化鈦電磁波屏蔽
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗主要探討以聚二甲基矽氧烷(PDMS)為基材,加入不同濃度的多壁奈米碳管/二氧化鈦複合材料,進行電磁波屏蔽效應的量測,並以介電係數、阻抗等數值來分析電磁波屏蔽的機制。
    研究中藉由溶膠凝膠法(sol-gel)使多壁奈米碳管表面包覆均勻金紅石相(rutile)的二氧化鈦,我們發現添加二氧化鈦可以有效提升反射損失的效果,也觀察到此聚二甲基矽氧烷/多壁奈米碳管/二氧化鈦複合物的電磁波屏蔽主要的機制為反射損失,次要機制為吸收損失。


    Electromagnetic shielding (EMI) of composites made from PDMS and TiO2 coated multi-walled carbon nanotubes is studied and permittivity and impedance are also measured to discuss the dielectric properties of the composites. Results suggest that TiO2 coatings produce a synergistic effect in reflection mechanism.

    摘要 I Abstract II 致謝 III 總目錄 V 圖目錄 VIII 第一章 文獻回顧 1 1-1 奈米碳管的基本結構 1 1-2奈米碳管的基本電性 3 1-3奈米碳管的合成 6 1-3-1電弧法 6 1-3-2雷射蒸發法 7 1-3-3化學氣相沉積法 7 1-4電磁波屏蔽理論 9 1-4-1反射損失(Reflection loss) 9 1-4-2吸收損失(Absorption loss) 10 1-4-3多重反射損失(Multi-reflection loss) 10 1-4-4 電磁波屏蔽效率 11 1-5 二氧化鈦的基本結構 14 1-5-1金紅石相 15 1-5-2銳鈦礦相 16 1-6 二氧化鈦的介電性質 17 第二章 實驗動機 19 第三章 實驗步驟 20 3-1實驗藥品與儀器 20 3-1-1實驗藥品與儀器設備型號 20 3-1-2聚二甲基矽氧烷(PDMS)之基本性質 21 3-2實驗流程 23 3-2-1 Sol-gel製備二氧化鈦/多壁奈米碳管複合物流程圖 23 3-2-2 本實驗總流程圖 24 3-3實驗步驟 25 3-3-1溶膠凝膠法(sol-gel)製作二氧化鈦/奈米碳管複合材料步驟 25 3-3-2 製備MWCNTs/TiO2/PDMS複合材料之步驟 26 3-3-3 材料分析與量測 27 第四章 實驗結果與討論 28 4-1 MWCNTs/TiO2複合材 掃描式電子顯微鏡(SEM)分析 28 4-2 X光能量散射光譜儀(EDS)分析 32 4-3 X光繞射(XRD)分析 33 4-4熱重分析(TGA) 35 4-5介電係數與電磁波屏蔽量測 37 4-5-1 A組試片 41 4-5-2 B組試片 47 第五章 結論 53 參考文獻 54

    1. Waser, R., Nanoelectronics and Information Technology. 2003: Wiley-VCH.
    2. Hamada, N., S. Sawada, and A. Oshiyama, NEW ONE-DIMENSIONAL CONDUCTORS - GRAPHITIC MICROTUBULES. Physical Review Letters, 1992. 68(10): p. 1579-1581.
    3. M. S. Dresselhaus, G.D., Phaedon Avouris,Springer-Verlag, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications. 2001.
    4. M. S. Dresselhaus, G.D., and P. C. Eklun, Science of fullerenes and carbon nanotubes. 1996.
    5. R. Saito, M.S.D., G. Dresselhaus Physical Properties Of Carbon Nanotubes. 1998.
    6. Mintmire, J.W., B.I. Dunlap, and C.T. White, Are fullerene tubules metallic? Physical Review Letters, 1992. 68(5): p. 631-634.
    7. Saito, R., et al., ELECTRONIC-STRUCTURE OF CHIRAL GRAPHENE TUBULES. Applied Physics Letters, 1992. 60(18): p. 2204-2206.
    8. Iijima, S. and T. Ichihashi, SINGLE-SHELL CARBON NANOTUBES OF 1-NM DIAMETER. Nature, 1993. 363(6430): p. 603-605.
    9. Saito, Y., et al., Carbon nanocapsules and single‐layered nanotubes produced with platinum‐group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge. Journal of Applied Physics, 1996. 80(5): p. 3062-3067.
    10. Guo, T., et al., SELF-ASSEMBLY OF TUBULAR FULLERENES. Journal of Physical Chemistry, 1995. 99(27): p. 10694-10697.
    11. Collins, P.G. and P. Avouris, Nanotubes for electronics. Scientific American, 2000. 283(6): p. 62-+.
    12. Mohlala, M.S., et al., Organometallic precursors for use as catalysts in carbon nanotube synthesis. Organometallics, 2005. 24(5): p. 972-976.
    13. Cheng, D.K., Field and wave electromagnetics. 1989: p. 198-219.
    14. Paul, C.R., Introduction to Electromagnetic Compatibility. 1992: p. 632-648.
    15. K. J. Vinoy, K.J.V., Rakesh Mohan Jha, Radar absorbing materials: from theory to design and characterization. 1996: p. 52-56.
    16. White, D.R.J., A handbook series on electromagnetic interference and compatibility. 1981. 3: p. 5-11.
    17. Diebold, U., The surface science of titanium dioxide. Surface Science Reports, 2003. 48(5–8): p. 53-229.
    18. Mo, S.-D. and W.Y. Ching, Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. Physical Review B, 1995. 51(19): p. 13023-13032.
    19. Primo, A., A. Corma, and H. Garcia, Titania supported gold nanoparticles as photocatalyst. Physical Chemistry Chemical Physics, 2011. 13(3): p. 886-910.
    20. 江長凌, 林煥祐., 朱智謙, 半導體製程中高介電(High K)材料的介紹.
    21. Parker, R.A., Static Dielectric Constant of Rutile, 1.6-1060°K. Physical Review, 1961. 124(6): p. 1719-1722.
    22. Harris, L.A., A Titanium Dioxide Hydrogen Detector. Journal of The Electrochemical Society, 1980. 127(12): p. 2657-2662.
    23. Park, B.H., et al., Photovoltaic response and dielectric properties of epitaxial anatase-TiO2 films grown on conductive La0.5Sr0.5CoO3 electrodes. Applied Physics Letters, 2001. 79(17): p. 2797-2799.
    24. Singh, R. and S.G. Kulkarni, Nanocomposites based on transition metal oxides in polyvinyl alcohol for EMI shielding application. Polymer Bulletin, 2014. 71(2): p. 497-513.
    25. Saini, P. and M. Arora, Microwave Absorption and EMI Shielding Behavior of Nanocomposites Based on Intrinsically Conducting Polymers, Graphene and Carbon Nanotubes. New Polymers for Special Applications. 2012.
    26. Zhang, X.F., P.F. Guan, and X.L. Dong, Multidielectric polarizations in the core/shell Co/graphite nanoparticles. Applied Physics Letters, 2010. 96(22)
    27. Wang, C., et al., The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Applied Physics Letters, 2011. 98(7): p. 3.
    28. Templeton, A., et al., Microwave Dielectric Loss of Titanium Oxide. Journal of the American Ceramic Society, 2000. 83(1): p. 95-100.
    29. Al-Saleh, M.H. and U. Sundararaj, Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon, 2009. 47(7): p. 1738-1746.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE