簡易檢索 / 詳目顯示

研究生: 梅肯倪
Deroo, Maikane
論文名稱: β-幾丁質薄膜之壓電響應及應用研究
Piezoelectric response of the β-chitin membrane and its applications
指導教授: 吳志明
Wu, Jyh-Ming
口試委員: 林宗宏
Bruyant, Aurelien
Lerondel, Gilles
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 61
中文關鍵詞: 物料環境能源
外文關鍵詞: Materials, Environment, Energy
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 吾人本次實習位於台灣清華大學材料科學系,加入由吳志明教授所領導的能源與光電實驗室。在實習期間,吾人從事由魷魚鞘萃取β-幾丁質的壓電響應之研究,藉由其壓電性質,在施予外在機械力後,能夠應用於奈米發電機,並利用產生的自由基降解水中染料,再藉其生物可降解性,達到生物資源循環之概念。
    目前完成工作項目:

    1.由魷魚鞘萃取β-幾丁質
    2.去蛋白質 和/或 去礦物質
    3.乾燥和研磨
    4.傅立葉紅外線分析
    5.將α-幾丁質轉換成β-幾丁質(拉力測試)
    6.提升β-幾丁質鐵電性質
    7.β-幾丁質之壓電性質探討
    8.奈米發電機
    9.壓電觸媒

    一般常見具有壓電性質之氟化聚合物當其在合成和分解時,常釋出傷害環境之物質。因此,在能源相關材料中找尋友善環境並具生物相容性之壓電聚合物極具意義。


    This internship took place at the National Tsing Hua University of Taiwan, within the Materials Science and Engineering department in the Energy and Optoelectronics Materials Laboratory led by Professor Jyh-Ming WU.

    During this period, I studied the piezoelectric response of β-chitin so that after application of mechanical constraints on a nanogenerator, radicals are created by piezocatalysis to eliminate some dyes present in the wastewater. Then β-chitin, will degrade alone over the days.

    The phases of work carried out are as follows:

    1.Extraction of pens from squid
    2.Deproteinization and / or demineralization
    3.Drying & grinding
    4.FTIR analysis
    5.Transformation of α-chitin into β-chitin (traction test)
    6.Improvement of the ferroelectric properties of β-chitin (poling)
    7.Studies of the piezoelectric properties of β-chitin
    8.Nanogenerator
    9.Piezocatalysis

    Conventional fluorinated polymers with piezoelectric properties release substances harmful to the environment during their synthesis and decomposition. Therefore, it is important to find ecological piezoelectric polymers in the field of energy-related materials.

    1 TABLE OF CONTENTS 6 2 ACKNOWLEDGMENTS 9 3 TABLE OF FIGURES & TABLES 10 4 LABORATORY PRESENTATION 12 4.1 National Tsing Hua University 12 4.2 Materials science and Engineering department 13 4.2.1 My Advisor Professor 13 5 Introduction 14 5.1 Chitin 14 5.2 Piezoelectric & Ferroelectric properties 15 5.2.1 Piezoelectric effect 15 5.2.2 Ferroelectric effect 16 5.3 Nanogenerator 17 5.4 Piezocatalysis 17 6 β-CHITIN SYNTHESIS 19 6.1 Squid pen extraction 19 6.2 Deproteinization & Demineralization 20 6.2.1 Deproteinization 20 6.2.2 Demineralization 21 6.2.3 Transformation into chitin powder 21 6.3 Chitin composition 21 6.3.1 Fourier transform infrared spectroscopy (FTIR) 21 6.4 Tensile stress tests 23 6.4.1 α-chitin and β-chitin structure 23 6.4.2 Transform α-chitin in β-chitin process 23 6.4.2.1 Process 23 6.4.2.2 Results 25 6.4.2.2.1 Normal β-chitin 25 6.4.2.2.2 Annealed β-chitin 26 6.4.2.3 Conclusion & solutions 27 6.5 Chitin synthesis without demineralization step 28 6.5.1 Scattering electron microscope analysis (SEM) 28 6.5.2 Fourier transform infrared spectroscope (FTIR) 29 6.5.3 X-ray Diffraction (XRD) 30 7 Electrical poling 31 7.1 Compacted chitin powder set up & process 31 7.1.1 FTIR of compacted chitin powder 32 7.2 Thin film of unheated chitin set up & process 33 7.2.1 FTIR of thin film unheated chitin 33 7.3 Thin film of heated chitin at 100°C set up & process 34 7.3.1 FTIR of thin film heated chitin 34 7.4 Electrical poling conclusion 34 7.5 Ferroelectric characteristics 34 7.5.1 Without poling 35 7.5.1.1 Spin coating on ITO substrate 35 7.5.1.2 Spin coating on Si wafer 36 7.5.2 With electrical poling 37 7.5.2.1 Compacted chitin powder poling 37 7.5.2.2 Thin film of unheated chitin poling 37 7.5.2.3 Thin film heated chitin at 100°C poling 38 7.5.3 Discussion & Conclusion 38 7.6 Piezoelectric characteristics 38 7.6.1 Without electrical poling 39 7.6.2 With electrical poling 40 7.6.2.1 Compacted chitin powder poling 40 7.6.2.2 Thin film of unheated chitin poling 42 7.6.2.3 Thin film heated chitin at 100°C poling 43 7.6.3 Discussion & conclusion 44 7.7 Extension of poling duration 45 7.7.1 Ferroelectric properties & piezoelectric properties 45 8 NANOGENERATOR 46 8.1 Up & down electrodes nanogenerator 46 8.2 Single electrode nanogenerator 47 8.3 Results 47 8.3.1 Single electrode nanogenerator 48 8.3.2 Top & down electrodes nanogenerator 49 8.4 Side by side electrodes nanogenerator 49 8.4.1 Results 50 8.5 Casting deposition process 51 8.5.1 Results 51 9 CONCLUSION 53 9.1 Project 53 9.2 Personally 53 10 REFERENCES 54 11 APPENDICES 58

    [1] Current Status - National Tsing Hua University, [no date]. [online]. [Accessed 27 February 2019]. Available from: http://nthu-en.web.nthu.edu.tw/files/13-1902-75729.php

    [2] History - National Tsing Hua University, [no date]. [online]. [Accessed 27 February 2019]. Available from: https://nthu-en.web.nthu.edu.tw/files/13-1902-75725.php

    [3] 國立清華大學校長室, [no date]. [online]. [Accessed 27 February 2019]. Available from: http://president.web.nthu.edu.tw/bin/home.php?Lang=en

    [4] About Us | National Tsing Hua University Department of Materials Science and Engineering, [no date]. [online]. [Accessed 27 February 2019]. Available from: http://www.mse.nthu.edu.tw/about.php

    [5] Chitosane, chitine, biopolymère, papier antimicrobien, emballage alimentaire, [no date]. [online]. [Accessed 27 February 2019]. Available from: http://cerig.pagora.grenoble-inp.fr/memoire/2010/chitosane-papier-antimicrobien.htm

    [6] EDITORS, B. D., 2017. Chitin. Biology Dictionary [online]. 13 January 2017. [Accessed 27 February 2019]. Available from: https://biologydictionary.net/chitin/

    [7] LIANG, Zhang, YAN, Chang-Feng, RTIMI, Sami and BANDARA, Jayasundera, 2019. Piezoelectric materials for catalytic/photocatalytic removal of pollutants: Recent advances and outlook. Applied Catalysis B: Environmental. February 2019. Vol. 241, p. 256–269. DOI 10.1016/j.apcatb.2018.09.028.

    [8] DOMENJOUD, Mathieu, [no date]. Caractérisation des propriétés électro-acoustiques de structures piézoélectriques soumises à une contrainte statique de type électrique ou mécanique. P. 279.

    [9] BENABDALLAH, Feres, [no date]. Evolution des propriétés diélectriques, ferroélectriques et électromécaniques dans le système pseudo-binaire (1-x)BaTi0.8Zr0.2O3- xBa0.7Ca0.3TiO3 / Corrélations structures et propriétés. P. 218.

    [10] Piezoelectric Materials: Crystal Orientation and Poling Direction, [no date]. COMSOL Multiphysics [online]. [Accessed 10 March 2019]. Available from: https://www.comsol.com/blogs/piezoelectric-materials-crystal-orientation-poling-direction/ 

    [11] PARK, Kwi-Il, XU, Sheng, LIU, Ying, HWANG, Geon-Tae, KANG, Suk-Joong L., WANG, Zhong Lin and LEE, Keon Jae, 2010. Piezoelectric BaTiO 3 Thin Film Nanogenerator on Plastic Substrates. Nano Letters. 8 December 2010. Vol. 10, no. 12, p. 4939–4943. DOI
    10.1021/nl102959k.

    [12] MUSHTAQ, Fajer, CHEN, Xiangzhong, HOOP, Marcus, TORLAKCIK, Harun, PELLICER, Eva, SORT, Jordi, GATTINONI, Chiara, NELSON, Bradley J. and PANÉ, Salvador, 2018. Piezoelectrically Enhanced Photocatalysis with BiFeO 3 Nanostructures for Efficient Water Remediation. iScience. June 2018. Vol. 4, p. 236–246. DOI 10.1016/j.isci.2018.06.003.

    [13] KITRA, 2014. Squid Pen Invertebrate, no shell, but gladius (internal supporting structure). SlideServe [online]. 11 October 2014. [Accessed 10 March 2019]. Available from: https://www.slideserve.com/kitra/squid-pen-invertebrate-no-shell-but-gladius-internal-supporting-structure

    [14] HOSSAIN, Ms and IQBAL, A, 2014. Production and characterization of chitosan from shrimp waste. Journal of the Bangladesh Agricultural University. 31 December 2014. Vol. 12, no. 1, p. 153–160. DOI 10.3329/jbau.v12i1.21405.

    [15] KIM, Kyungtae, HA, Minjeong, CHOI, Byeongwook, JOO, Se Hun, KANG, Han Sol, PARK, Ju Hyun, GU, Bongjun, PARK, Chanho, PARK, Cheolmin, KIM, Jongbok, KWAK, Sang Kyu, KO, Hyunhyub, JIN, Jungho and KANG, Seok Ju, 2018. Biodegradable, electro-active chitin nanofiber films for flexible piezoelectric transducers. Nano Energy. June 2018. Vol. 48, p. 275–283. DOI 10.1016/j.nanoen.2018.03.056.

    [16] MPEMBA KOINSIKILA, Gerly Steven, BENSALEM Abdelhamid, 2010-2011. Elaboration des Polymères aux propriétés piézoélectriques. Université de Valenciennes et du Hainaut – Cambresis. [Online]. [Accessed 15 March 2019]. Available from: https://www.doyoubuzz.com/var/f/zZ/eQ/zZeQ68o1fFv7StPgIn-VXpcRAWqr5TjGh3UNOHKJE4xLb_ym0i.pdf

    [17] CUONG, Hoang Ngoc, MINH, Nguyen Cong, VAN HOA, Nguyen and TRUNG, Trang Si, 2016. Preparation and characterization of high purity β-chitin from squid pens ( Loligo chenisis ). International Journal of Biological Macromolecules. December 2016. Vol. 93, p. 442–447. DOI 10.1016/j.ijbiomac.2016.08.085.
    10.10 Scattering electron microscope analysis (SEM)
    [18] COUTEAU, Christophe, DEROO, Maïkane and RAOULT, Emilie, 2017 – Master 2 ONT. P. 29.

    [19] Diffraction des Rayons X (DRX) [Cristal Gemme], [no date]. [online]. [Accessed 25 April 2019]. Available from: http://nte.mines-albi.fr/CristalGemme/co/uc_DRX.html

    [20] Fiche Identité DRX - ICPEES - Université de Strasbourg, [no date]. [online]. [Accessed 25 April 2019]. Available from: http://icpees.unistra.fr/institut/equipements/fiche-identite-drx/
    10.12 Chitin synthesis without demineralization step

    [21] CUONG, Hoang Ngoc, MINH, Nguyen Cong, VAN HOA, Nguyen and TRUNG, Trang Si, 2016. Preparation and characterization of high purity β-chitin from squid pens ( Loligo chenisis ). International Journal of Biological Macromolecules. December 2016. Vol. 93, p. 442–447. DOI 10.1016/j.ijbiomac.2016.08.085.

    [22] Piezoelectric Materials: Crystal Orientation and Poling Direction, [no date]. COMSOL Multiphysics [online]. [Accessed 15 April 2019]. Available from: https://www.comsol.com/blogs/piezoelectric-materials-crystal-orientation-poling-direction/

    [23] DAHIYA, Ravinder S., VALLE, Maurizio, METTA, Giorgio, LORENZELLI, Leandro and PEDROTTI, Severino, 2008. Deposition, processing and characterization of P(VDF-TrFE) thin films for sensing applications. In: 2008 IEEE Sensors [online]. Lecce, Italy: IEEE. October 2008. p. 490–493. [Accessed 15 April 2019]. ISBN 978-1-4244-2580-8. Available from: http://ieeexplore.ieee.org/document/4716484/

    [24] DUCROT, Pierre-Henri, DUFOUR, Isabelle and AYELA, Cédric, 2016. Optimization Of PVDF-TrFE Processing Conditions For The Fabrication Of Organic MEMS Resonators. Scientific Reports [online]. May 2016. Vol. 6, no. 1. [Accessed 15 April 2019]. DOI 10.1038/srep19426. Available from: http://www.nature.com/articles/srep19426

    [25] ESTERLY, Daniel M, [no date]. Manufacturing of Poly(vinylidene fluoride) and Evaluation of its Mechanical Properties. P. 71.

    [26] WEGENER, Dr Michael, [no date]. F 10 Electrical Poling of Polymers. P. 1

    [27] AJC1, 2010. Atomic force microscopy [online]. [photo]. 19 July 2010. [Accessed 29 May 2019]. Available from: https://www.flickr.com/photos/ajc1/4808817852/

    QR CODE