研究生: |
洪唯倫 Hung, Wei-Lun |
---|---|
論文名稱: |
溫度敏感型胺基酸水膠成膠機制探討 與親水性抗癌藥物投遞之應用 Gelation studies and Hydrophilic Anti-Cancer Drug Delivery by Thermosensitive Polypeptide Hydrogel |
指導教授: |
朱一民
Chu, I-Ming |
口試委員: |
林峰輝
Lin, Feng-Huei 王潔 Wang, Jane |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | 溫度敏感型胺基酸水膠 、5-氟尿嘧啶 、原位成膠 |
外文關鍵詞: | thermosensitive polypeptide hydrogel, 5-fluorouracil, in-situ gelation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討可應用於原位成膠,長效釋放抗癌藥物的溫度敏感型水膠劑型。
有潛力用於乳癌術後化療,防止原位復發等應用。本研究合成之溫度敏感型胺基
酸水膠高分子為甲基化聚乙二醇- 左旋聚丙胺酸(methoxy-poly(ethylene
glycol)-polyalanine, mPEG-L-PA)。以1H 與13C 核磁共振光譜儀、傅立葉轉換反
射式紅外線光譜儀、凝膠滲透層析儀、流變儀、圓二色光譜儀、掃描式電子顯微
鏡與穿透式電子顯微鏡分析建立胺基酸水膠mPEG-Alanine 膠體性質與成膠機制。
水膠胺基酸所接鏈段越長其成膠溫度越低,黏度與彈性體性質越佳。由CD 與
ATR-FTIR 分析可發現在低濃度環境下,mPEG-Alanine 二級結構隨著溫度上升
逐漸減少。而在ATR-FTIR 分析高濃度水膠樣品二級結構,隨著溫度上升,β-sheet
結構也隨之增加。在藥物包覆與釋放方面,選擇親水性抗癌藥物:5-氟尿嘧啶,
將其包覆於水膠後於磷酸鹽緩衝溶液(pH = 7.4),以高效能液相層析儀探討藥物
釋放情形:相同水膠材料包覆不同5-氟尿嘧啶藥量藥物釋放;不同Alanine 鏈段
長度mPEG-Alanine 水膠包覆相同5-氟尿嘧啶藥量與彈性蛋白酶存在與否對於藥
物釋放作一比較。mPEG-Alanine 結構穩定度相當良好,經Elastase 酵素作用十
天只降解約百分之二十。在藥物釋放方面,其釋放量約百分之三十五至百分之六
十,顯示藥物包覆情況良好。
We synthesized a series of mPEG-L-PA diblock copolymers and investigated the
hydrophobic block length effect on the secondary structure influencing the
nanostructure of the self-assembled amphiphilic copolymers, the thermosensitivity of
the hydrogels in aqueous solution.
Poly(ethylene glycol) methyl ether-peptide (mPEG-peptide) hydrogels consist of
a mPEG and peptide block, both of which have been shown to exhibit excellent cell
compatibility and low toxicity alone and as a block copolymer. Taken together,
thermosensitive mPEG-peptide hydrogels are attractive candidates for drug delivery
applications.
In this study, we propose the use of a thermosensitive mPEG-peptide hydrogel
for drug delivery with encapsulating 5-Fluorouracil (5-FU). Incorporation and release
of these molecules will be evaluated in vitro as proof of concept for drug
encapsulation. Future work will involve the injection of hydrogel for the evaluation of
toxicity and compatibility.
1. Hoare, T. R.; Kohane, D. S., Hydrogels in drug delivery: Progress and challenges. Polymer 2008, 49 (8), 1993-2007.
2. Kopecek, J., Swell gels. Nature 2002, 417, 388-389.
3. Kopecek, J., Hydrogel biomaterials: a smart future? Biomaterials 2007, 28 (34), 5185-92.
4. Chung, H. J.; Park, T. G., Self-assembled and nanostructured hydrogels for drug delivery and tissue engineering. Nano Today 2009, 4 (5), 429-437.
5. LÍM, O. W. D., Hydrophilic Gels for Biological Use. Nature 1960, 185, 117-118.
6. Lim, F.; Sun, A. M., Microencapsulated islets as bioartificial endocrine pancreas. Science 1980, 210 (4472), 908-10.
7. Yannas, I. V.; Lee, E.; Orgill, D. P.; Skrabut, E. M.; Murphy, G. F., Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proceedings of the National Academy of Sciences of the United States of America 1989, 86 (3), 933-7.
8. Yu, L.; Chang, G.; Zhang, H.; Ding, J., Temperature-induced spontaneous sol-gel transitions of poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic acid-co-glycolic acid) triblock copolymers and their end-capped derivatives in water. Journal of Polymer Science Part A: Polymer Chemistry 2007, 45 (6), 1122-1133.
9. Moon, H. J.; Ko du, Y.; Park, M. H.; Joo, M. K.; Jeong, B., Temperature-responsive compounds as in situ gelling biomedical materials. Chemical Society reviews 2012, 41 (14), 4860-83.
10. (a) Reed, D. K. G. a. A. M., Biodegradable polymers for use in surgery—polyglycolic:poly(actic acid) homo- and copolymers- 1. polymer 1979, 20 (12), 1459-1464; (b) B. Eling, S. G. a. A. J. P., Biodegradable materials of poly(l-lactic acid)- 1. Melt-spun and solution-spun fibres. polymer 1982, 23 (11), 1587-1593.
11. Robert A. Miller, J. M. B., and Duane E. Cutright, Degradation rates of oral resorbable implants (polylactates and polyglycolates)- Rate modification with changes in PLA-PGA copolymer ratios. Journal of Biomedical Materials Research 1977, 11 (5), 711-719.
12. Lai, P.-L.; Tsai-Yu Lin, C.; Hong, D.-W.; Yang, S.-R.; Chang, Y.-H.; Chen, L.-H.; Chen, W.-J.; Chu, I. M., Development of bioactive thermosensitive polymer–ceramic composite as bone substitute. Chemical Engineering Science 2013, 89, 133-141.
13. Jeong, B.; Bae, Y. H.; Lee, D. S.; Kim, S. W., Biodegradable block copolymers as injectable drug-delivery systems. Nature 1997, 388 (6645), 860-2.
14. Jeong, Y.; Joo, M. K.; Bahk, K. H.; Choi, Y. Y.; Kim, H. T.; Kim, W. K.; Lee, H. J.; Sohn, Y. S.; Jeong, B., Enzymatically degradable temperature-sensitive polypeptide as a new in-situ gelling biomaterial. Journal of controlled release : official journal of the Controlled Release Society 2009, 137 (1), 25-30.
15. Moon, H. J.; Choi, B. G.; Park, M. H.; Joo, M. K.; Jeong, B., Enzymatically degradable thermogelling poly(alanine-co-leucine)-poloxamer-poly(alanine-co-leucine). Biomacromolecules 2011, 12 (4), 1234-42.
16. Shinde, U. P.; Joo, M. K.; Moon, H. J.; Jeong, B., Sol–gel transition of PEG–PAF aqueous solution and its application for hGH sustained release. Journal of Materials Chemistry 2012, 22 (13), 6072.
17. Li, F.; Li, S.; Ghzaoui, A. E.; Nouailhas, H.; Zhuo, R., Synthesis and gelation properties of PEG-PLA-PEG triblock copolymers obtained by coupling monohydroxylated PEG-PLA with adipoyl chloride. Langmuir : the ACS journal of surfaces and colloids 2007, 23 (5), 2778-83.
18. Yun, E. J.; Yon, B.; Joo, M. K.; Jeong, B., Cell therapy for skin wound using fibroblast encapsulated poly(ethylene glycol)-poly(L-alanine) thermogel. Biomacromolecules 2012, 13 (4), 1106-11.
19. 王盈錦, 生物醫學材料. 合記圖書出版社 2002.
20. DeSantis, C.; Ma, J.; Bryan, L.; Jemal, A., Breast cancer statistics, 2013. CA: a cancer journal for clinicians 2014, 64 (1), 52-62.
21. Raeburn, J.; Zamith Cardoso, A.; Adams, D. J., The importance of the self-assembly process to control mechanical properties of low molecular weight hydrogels. Chemical Society reviews 2013, 42 (12), 5143-56.
22. Choi, Y. Y.; Joo, M. K.; Sohn, Y. S.; Jeong, B., Significance of secondary structure in nanostructure formation and thermosensitivity of polypeptide block copolymers. Soft Matter 2008, 4 (12), 2383.
23. Choi, Y. Y.; Jeong, Y.; Joo, M. K.; Jeong, B., Reverse thermal organogelation of poly(ethylene glycol)-polypeptide diblock copolymers in chloroform. Macromolecular bioscience 2009, 9 (9), 869-74.
24. Park, S. H.; Choi, B. G.; Moon, H. J.; Cho, S.-H.; Jeong, B., Block sequence affects thermosensitivity and nano-assembly: PEG-l-PA-dl-PA and PEG-dl-PA-l-PA block copolymers. Soft Matter 2011, 7 (14), 6515.
25. Inomata, K.; Iguchi, Y.; Mizutani, K.; Sugimoto, H.; Nakanishi, E., Anisotropic Swelling Behavior Induced by Helix–Coil Transition in Liquid Crystalline Polypeptide Gels. ACS Macro Letters 2012, 1 (7), 807-810.
26. Chiang, P. R.; Lin, T. Y.; Tsai, H. C.; Chen, H. L.; Liu, S. Y.; Chen, F. R.; Hwang, Y. S.; Chu, I. M., Thermosensitive hydrogel from oligopeptide-containing amphiphilic block copolymer: effect of peptide functional group on self-assembly and gelation behavior. Langmuir : the ACS journal of surfaces and colloids 2013, 29 (51), 15981-91.
27. Lei, N.; Gong, C.; Qian, Z.; Luo, F.; Wang, C.; Wang, H.; Wei, Y., Therapeutic application of injectable thermosensitive hydrogel in preventing local breast cancer recurrence and improving incision wound healing in a mouse model. Nanoscale 2012, 4 (18), 5686-93.
28. Seib, F. P.; Pritchard, E. M.; Kaplan, D. L., Self-assembling doxorubicin silk hydrogels for the focal treatment of primary breast cancer. Adv Funct Mater 2013, 23 (1), 58-65.
29. Mishra, G. P.; Kinser, R.; Wierzbicki, I. H.; Alany, R. G.; Alani, A. W., In situ gelling polyvalerolactone-based thermosensitive hydrogel for sustained drug delivery. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V 2014, 88 (2), 397-405.
30. Baginska, K.; Makowska, J.; Wiczk, W.; Kasprzykowski, F.; Chmurzynski, L., Conformational studies of alanine-rich peptide using CD and FTIR spectroscopy. Journal of peptide science : an official publication of the European Peptide Society 2008, 14 (3), 283-9.
31. Sreerama, N.; Woody, R. W., Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Analytical biochemistry 2000, 287 (2), 252-60.
32. De Carlo, S.; Harris, J. R., Negative staining and cryo-negative staining of macromolecules and viruses for TEM. Micron 2011, 42 (2), 117-31.
33. Shinchuk, L. M.; Sharma, D.; Blondelle, S. E.; Reixach, N.; Inouye, H.; Kirschner, D. A., Poly-(L-alanine) expansions form core beta-sheets that nucleate amyloid assembly. Proteins 2005, 61 (3), 579-89.
34. Castelletto, V.; Gouveia, R. J.; Connon, C. J.; Hamley, I. W.; Seitsonen, J.; Ruokolainen, J.; Longo, E.; Siligardi, G., Influence of elastase on alanine-rich peptide hydrogels. Biomaterials Science 2014, 2 (6), 867.
35. Lei, L.; Liu, X.; Guo, S.; Tang, M.; Cheng, L.; Tian, L., 5-Fluorouracil-loaded multilayered films for drug controlled releasing stent application: Drug release, microstructure, and ex vivo permeation behaviors. Journal of controlled release : official journal of the Controlled Release Society 2010, 146 (1), 45-53.
36. Shibayama, M., Universality and Specificity of Polymer Gels Viewed by Scattering Methods. Bulletin of the Chemical Society of Japan 2006, 79 (12), 1799-1819.
37. Huang, T. W.; Liu, S. Y.; Chuang, Y. J.; Hsieh, H. Y.; Tsai, C. Y.; Huang, Y. T.; Mirsaidov, U.; Matsudaira, P.; Tseng, F. G.; Chang, C. S.; Chen, F. R., Self-aligned wet-cell for hydrated microbiology observation in TEM. Lab on a chip 2012, 12 (2), 340-7.