簡易檢索 / 詳目顯示

研究生: 陳信宏
Chen, Xin-Hong
論文名稱: 具有惡意攻擊之下的隨機跳躍擴散系統之多目標H2/H無窮估計方法的安全性增強濾波器設計
Security-Enhanced Filter Design for Stochastic Jump-Diffusion System Under Malicious Attack via Multiobjective H_2/H_infinity Estimation Method
指導教授: 陳博現
Chen, Bor-Sen
口試委員: 吳常熙
Wu, Chang-Xi
許健平
Xu, Jian-Ping
黃志良
Huang, Zhi-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 26
中文關鍵詞: 隨機跳躍擴散系統惡意攻擊多目標問題多目標進化演算法安全性增強濾波器
外文關鍵詞: stochastic jump diffusion system, malicious attack, multiobjective problem, multiobjective evolution algorithm, security enhanced filter
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇研究中,我們提出了一種新穎的安全性增強濾波器(SEF),用於隨機跳躍擴散系統和其感測器同時具有外部干擾、測量雜訊以及攻擊信號情況下的系統狀態和攻擊信號估計。為了使用傳統的 Luenberger-Type 濾波器來有效估計系統狀態和攻擊信號,我們將針對攻擊信號的平滑模型嵌入到系統模型之中。從實際的角度來看,工程師設計濾波器時不僅需要考量強健性,也要考慮最佳效能。因此,我們提出了一種對於隨機跳躍擴散系統的隨機多目標(MO)H_2/H_∞ SEF方案,用來降低攻擊信號和外部干擾對濾波能力的影響,進而提高系統的安全性。透過使用次優化方式,MO H_2/H_∞ SEF設計可以轉換成對於系統H_2以及H_∞性能各自的上限同時最小化問題。在非線性隨機系統的情況下,則可以將MO H_2/H_∞ SEF設計問題轉換為由 Hamilton-Jacobi 不等式(HJI)約束的多目標優化問題(MOP)。為了克服求解困難的HJI約束MOP,經由使用全局線性化技術,非線性隨機系統SEF設計的HJI約束MOP可以轉換為由線性矩陣不等式(LMI)約束的MOP。此外,我們提出了一種LMI約束多目標進化演算法(MOEA),以有效解決非線性隨機系統SEF設計中的LMI約束MOP。最後,使用一個非線性地面飛彈雷達系統在遭受惡意攻擊信號下的隨機飛彈彈道估計問題展示所提出的MO H_2/H_∞ SEF設計程序,並評估該設計方法的性能。


    In this study, a novel security-enhanced filter (SEF) is proposed for the system state and attack signal estimation of the stochastic jump-diffusion systems with the external disturbance, measurement noise and attack signal on system and sensor. For the efficient estimation of system state and attack signal by conventional Luenberger-type filter, a novel smoothed model of attack signals is embedded in system model. From the practical perspective, the engineers consider the filter design to be not only robust but also optimal. Therefore, the stochastic multi-objective (MO) H_2/H_∞ SEF scheme for the stochastic jump-diffusion systems is proposed to attenuate the effect of the attack signal and external disturbance on the filtering ability for security enhancement. By using the suboptimal method, the stochastic MO H_2/H_∞ SEF design could be transformed to minimizing the upper bounds of the stochastic MO H_2/H_∞ filtering performance simultaneously. In the nonlinear stochastic system case, the MO H_2/H_∞ SEF design problem could be converted to a Hamilton-Jacobi inequalities (HJIs)-constrained multiobjective optimization problem (MOP). In order to overcome the difficulty in solving the HJIs-constrained MOP, based on the global linearization technique, the HJIs-constrainted MOP for SEF of nonlinear stochastic systems could be transformed to a linear matrix inequalities (LMIs)-constrained MOP. Further, an LMIs-constrained multiobjective evolution algorithm (MOEA) is proposed to efficiently solve the LMIs-constrained MOP for the design of SEF. Finally, a simulation example of the nonlinear stochastic missile trajectory estimation problem by ground missile radar system under the malicious attack signal is given to illustrate the design procedure and evaluate the performance of the proposed MO H_2/H_∞ SEF design method.

    Abstract.........................................................I 摘要.............................................................II 致謝............................................................III Content.........................................................IV I.INTRODUCTION...................................................1 II.SYSTEM DESCRIPTION AND PRELIMINARY............................3 III.MULTIOBJECTIVE STOCHASTIC H2/H∞SECURITY-ENHANCED FILTER DESIGN .................................................................6 IV.SECURITY-ENHANCED FILTER FOR NONLINEAR STOCHASTIC JUMP DIFFUSION SYSTEMS................................................8 V.SIMULATION RESULTS............................................13 VI.CONCLUSION...................................................19 Appendix A......................................................19 Appendix B......................................................19 Appendix C......................................................20 Appendix D......................................................21 Appendix E......................................................23 REFERENCES......................................................24

    [1] H. L. Dong, Z. D. Wang, X. Ding and H. J. Gao, ”Event-based H1 filter design for a class of nonlinear time-varying systems with
    fading channels and multiplicative noises,” IEEE Trans. Signal Process., vol. 63, no. 13, pp. 3387–3395, Jul. 2015.
    [2] M. Chen and G. Feng, “Delay-dependent H1 filter design for discretetime fuzzy systems with time-varying delays,” IEEE Trans.
    Fuzzy Syst., vol. 17, no. 3, pp. 604-616, Jun. 2009.
    [3] R. van der Merwe, A. Doucet, J. F. G. de Freitas, and E. Wan, “The unscented particle filter,” Adv. Neural Inform. Process. Syst., Dec.
    2000
    [4] S. Yin, X. Zhu, “ Intelligent particle filter and its application on fault detection of nonlinear system,” IEEE Trans. Ind. Electron, vol.
    62, no. 6, pp. 3852-3861, Jun. 2015.
    [5] X. H. Chang, Z. M. Li, and J. H. Park, “Fuzzy generalized H2 filtering for nonlinear discrete-time systems with measurement
    quantization,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 48, no. 12, pp. 2419-2430, Dec. 2018.
    [6] V. Dragan, S. Aberkane, I. L. Popa, ”Optimal H2 filtering for periodic linear stochastic systems with multiplicative white noise
    perturbations and sampled measurements,” Journal of the Franklin Institute., vol. 352, no. 12, pp. 5985-6010, Dec. 2015.
    [7] H.L. Dong, Z.D. Wang, H.J. Gao, ”Robust H1 filtering for a class of nonlinear networked systems with multiple stochastic
    communication delays and packet dropouts,” IEEE Trans. Signal Process., vol. 48, no. 4, pp. 1957–1966, Apr. 2010.
    [8] H. P. Liu, D. W.C. Ho, F. Sun, ”Design of H1 filter for Markov jumping linear systems with non-accessible mode information,”
    Journal of the International Federation of Automatic Control., vol. 44, no. 10, pp. 2655-2660, Oct. 2008.
    [9] H. R. Karimi, “Robust filter design for uncertain linear systems over network with network-induced delays and output quantization,”
    Model. Identificat. Control, vol. 30, no. 1, pp. 27–37, 2009.
    [10] H. B. Zhang, H. Zhong, C.Y. Dang, ”Delay-dependent decentralized H1 filtering for discrete-time nonlinear interconnected systems
    with time-varying delay based on the T–S fuzzy model,” IEEE Trans. Fuzzy Syst., vol. 20, no. 3, pp. 431-443, Jun. 2012.
    [11] B. S. Chen and C. F. Wu, “Robust scheduling filter design for a class of nonlinear stochastic poisson signal systems,” IEEE Trans.
    Signal Process., vol. 63, no. 23, pp. 6245–6257, Dec. 1, 2015.
    [12] Q. Liu, Z. Wang, X. He, G. Ghinea, and F. E. A1saadi, A resilient approach to distributed filter design for time-varying systems under
    stochastic nonlinearities and sensor degradation, IEEE Trans. Signal Processing, vol. 65, no. 5, pp. 1300-1309,2017.
    [13] S. Sun, F. Peng, and H. Lin, “Distributed asynchronous fusion estimator for stochastic uncertain systems with multiple sensors of
    different fading measurement rates,” IEEE Trans. Signal Process., vol. 66, no. 3, pp. 641– 653, Feb. 2018.
    [14] D. R. Cox and H. D. Miller, The Theory of Stochastic Processes. London: Methuen and Company, 1965.
    [15] C.-F.Wu, B.-S. Chen, andW. Zhang, “Multiobjective investment policy for a nonlinear stochastic financial system: a fuzzy approach,”
    IEEE Trans. Fuzzy Syst., vol. 25, no. 2, pp. 460–474, Apr. 2017.
    [16] B. S. Chen and W. H. Zhang, “Stochastic H2=H1 control with statedependent noise,” IEEE Trans. Autom. Control, vol. 49, no. 1,
    pp. 45–57, Jan. 2004.
    [17] W. H. Zhang and B. S. Chen, “State feedback H1 control for a class of nonlinear stochastic systems,” SIAM J. Control Optim., vol.
    44, no. 6, pp. 1973–1991, 2006.
    [18] W. H. Zhang, B. S. Chen, L. Sheng, and M. Gao, “Robust filter design for a class of nonlinear stochastic systems with state-dependent
    noise,” Math. Problems Eng., vol. 2012, pp. 1–15, 2012.
    [19] Z. D. Wang, Y. R. Liu, and X. H. Liu, “H1 filtering for uncertain stochastic time-delay systems with sector-bounded nonlinearities,”
    Automatica, vol. 44, no. 5, pp. 1268–1277, May 2008
    [20] R. M. AbuSaris and F. B. Hanson, “Computational suboptimal filter for a class of Wiener-Poisson driven stochastic processes,” Dynam.
    Control, vol. 7, no. 3, pp. 279–292, Jul. 1997.
    [21] B. K. Osendal and A. Sulem, Applied Stochastic Control of Jump Diffusions, 2nd ed. Berlin, Germany: Springer, 2007.
    [22] J. Westman and F. Hanson, “State dependent jump models in optimal control,” in Proc. 38th IEEE Conf. Decision Control, vol. 3, pp.
    2378–2383, Dec. 1999.
    [23] R. Situ, Theory of Stochastic Differential Equations With Jumps and Applications: Mathematical and Analytical Techniques With
    Applications to Engineering. New York, NY, USA: Springer, 2005.
    [24] F. B. Hanson, Applied Stochastic Processes and Control for Jump-Diffusions : Modeling, Analysis, and Computation. Philadelphia,
    PA, USA: SIAM, 2007.
    [25] X. L. Lin, C. F. Wu and B. S. Chen, ”Robust H1 adaptive fuzzy tracking control for MIMO nonlinear stochastic poisson jump
    diffusion systems,” IEEE trans. Cybern., vol. 49, no. 8, Aug. 2019.
    [26] C. F. Wu, B. S. Chen and W. H. Zhang, ”Multiobjective H2=H1 control design of the nonlinear mean-field stochastic jump-diffusion
    systems via fuzzy approach,” IEEE Trans. Fuzzy Syst., vol. 27, no. 4, Apr. 2019.
    [27] X.M. Yao, L.G. Wu, W.X. Zheng, ”Fault detection filter design for Markovian jump singular systems with intermittent measurements,”
    IEEE Trans. Signal Process., vol. 59, no. 7, pp. 3099–3109, Jun. 2011.
    [28] H. Dong, Z. Wang, D. Ho, H. Gao, ”Robust H1 filtering for markovian jump systems with randomly occurring nonlinearities and
    sensor saturation: the finite-horizon case,” IEEE Trans. Signal Process., vol. 59, no. 7, pp. 3048–3057, Jul. 2011.
    [29] E. O¨ zkan, F. Lindsten, C. Fritsche, and F. Gustafsson, “Recursive maximum likelihood identification of jump Markov nonlinear systems,”
    IEEE Trans. Signal Process., vol. 63, no. 3, pp. 754–765, Mar. 2015.
    [30] C. Mavromoustakis, G. Mastorakis, and J. M. Batalla, Internet of Things (IoT) in 5G Mobile Technologies, vol. 8. Springer, 201
    [31] D. Minoli, K. Sohraby, and B. Occhiogrosso, “IoT considerations, requirements, and architectures for smart buildings—Energy
    optimization and next-generation building management systems,” IEEE Internet Things J., vol. 4, no. 1, pp. 269–283, Feb. 2017.
    [32] K. Georgiou, S. Xavier-de-Souza, and K. Eder, “The IoT energy challenge: A software perspective,” IEEE Embedded Syst. Lett., vol.
    10, no. 3, pp. 53–56, Sep. 2018.
    [33] A. Al-Ali, I. A. Zualkernan, M. Rashid, R. Gupta, and M. AliKarar, “A smart home energy management system using IoT and big
    data analytics approach,” IEEE Trans. Consum. Electron., vol. 63, no. 4, pp. 426–434, Nov. 2017.
    [34] S. Li, L. Da Xu, and S. Zhao, “5G Internet of Things: A survey,” J. Ind. Inf. Integr., Feb. 2018.
    [35] V. Kharchenko, M. Kolisnyk, I. Piskachova and N. Bardis, ”Reliability and Security Issues for IoT-based Smart Business Center:
    Architecture and Markov Model,” 2016 Third International Conference on Mathematics and Computers in Sciences and in Industry
    (MCSI), Chania, 2016, pp. 313-318.
    [36] T. Abels, R. Khanna and K. Midkiff, ”Future proof IoT: Composable semantics, security, QoS and reliability”, 2017 IEEE Topical
    Conference on Wireless Sensors and Sensor Networks (WiSNet), 2017.
    [37] M. A. Khan and K. Salah, “IoT security: Review, blockchain solutions, and open challenges,” Future Gener. Comput. Syst., vol. 82,
    pp. 395–411, May 2018.
    [38] R. Mahmoud, T. Yousuf, F. Aloul, and I. Zualkernan, “Internet of Things (IoT) security: Current status, challenges and prospective
    measures,” in Proc. 10th Int. Conf. Internet Technol. Secured Trans. (ICITST), London, U.K., Dec. 2015, pp. 336–341.
    [39] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, “Blockchain for IoT security and privacy: The case study of a smart home,”
    in Proc. IEEE Int. Conf. Pervasive Comput. Commun. Workshops (PerCom Workshops), Mar. 2017, pp. 618–623.
    [40] Y. H. Hwang, “Iot security & privacy: Threats and challenges,” in Proceedings of the 1st ACM Workshop on IoT Privacy, Trust, and
    Security, ser. IoTPTS ’15. New York, NY, USA: ACM, 2015, pp.
    [41] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “SPHINX: Detecting security attacks in software-defined networks,” in Proc. Netw.
    Distrib. Syst. Security (NDSS) Symp., San Diego, CA, USA, 2015, pp. 1–15.
    [42] E. G. AbdAllah, H. S. Hassanein, and M. Zulkernine, “A survey of security attacks in information-centric networking,” IEEE Commun.
    Surveys Tuts., vol. 17, no. 3, pp. 1441–1454, 3rd Quart., 2015.
    [43] M. Nawir, A. Amir, N. Yaakob, and O. B. Lynn, “Internet of Things (IoT): Taxonomy of security attacks,” in Proc. 3rd Int. Conf.
    Electron. Design (ICED), Aug. 2016, pp. 321–326.
    [44] Z. Wang, P. Shi, and C. Lim, “H􀀀=H1 fault detection observer in finite frequency domain for linear parameter-varying descriptor
    systems,” Automatica, vol. 86, pp. 38–45, Dec. 2017.
    [45] X. Zhu and Y. Xia, “H1 descriptor fault detection filter design for T–S fuzzy discrete-time systems,” J. Franklin Inst., vol. 351, no.
    12, pp. 5358–5375, 2014.
    [46] Z. Wang, M. Rodrigues, D. Theilliol, and Y. Shen, “Actuator fault estimation observer design for discrete-time linear parameter-varying
    descriptor systems,” Int. J. Adaptive Control Signal Proc., vol. 29, no. 2, pp. 242–258, 2015.
    [47] F. R. L. Estrada, J. C. Ponsart, D. Theilliol, and C. M. Astorga-Zaragoza, “Robust H􀀀=H1 fault detection observer design for
    descriptor-LPV systems with unmeasurable gain scheduling functions,” Int. J. Control, vol. 88, no. 11, pp. 2380–2391, 2015.
    [48] B.-S. Chen, W.-H. Chen, and H.-L. Wu, “Robust global linearization filter design for nonlinear stochastic systems,” IEEE Trans. Circuits
    Syst. I, Reg. Papers, vol. 56, no. 7, pp. 1441–1454, Jul. 2009.
    [49] W. Mao, F. Deng, and A. Wan, ”Robust H2=H1 global linearization filter design for nonlinear stochastic timevarying delay systems,”
    Science China(Information Sciences), vol. 59, no. 3, pp. 1-17, 2016.
    [50] G. M. Siouris, G. Chen, and J. Wang, “Tracking an incoming ballistic missile using an extended interval Kalman filter,” IEEE Trans.
    Aerosp. Electron. Syst, vol. 33, no. 1, pp. 232–240, 1997.
    [51] S.H. Zak, “Systems and Control ”, Oxford, 2003.
    [52] S. P. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory. Philadelphia, PA,
    USA: SIAM, 1994.

    QR CODE