研究生: |
王晉瑜 Wang, Ching-Yu |
---|---|
論文名稱: |
多壁奈米碳管包覆之二磷化矽做為優秀的鋰離子電池及鈉離子電池陽極材料 MWCNT-wrapped SiP2 as a Superior Anode Material for Lithium-Ion Batteries and Sodium-Ion Batteries. |
指導教授: |
段興宇
Tuan, Hsing-Yu |
口試委員: |
曾院介
Tseng, Yuan-Chieh 袁芳偉 Yuan, Fang-Wei |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 33 |
中文關鍵詞: | 二磷化矽 、鋰離子電池 、鈉離子電池 、陽極材料 、奈米碳管 |
外文關鍵詞: | silicon diphosphide, lithium ion battery, sodium ion battery, anode material, carbon nanotube |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二磷化矽做為電池陽極具有相當高的理論電量,於鋰電池與鈉電池分別可達到2902 mA h g-1及1788 mA h g-1, 但是在前面的研究中卻呈現出較差的循環表現。在此研究中,藉由將多壁奈米碳管纏繞於二磷化矽表面可有效提升其做為鋰、鈉電池陽極的穩定度。在此結構中,奈米碳管可有效改善二磷化矽導電性以及強化材料結構,使其不易在鋰、鈉離子進入過程中破裂而導致電容量顯著下降。在本研究中,我們利用高能量球磨將多壁奈米碳管(MWCNT)纏繞在二磷化矽(SiP2)表面。MWCNT-wrapped SiP2在鋰離子電池中,以0.5A g-1電流密度充放電循環一百圈之後,電容量仍有1622 mA h g-1 (第五圈的93%);在鈉離子電池中,以0.2A g-1的電流密度經過200圈的充放電循環後,電容量保持在925 mA h g-1 (第五圈的132%)。此外;在較高的電流密度的充放能力也顯著的提升,在4A g-1的電流密度下,鋰電池的電容量有1149 mA h g-1提升至1522 mA h g-1;在2Ag-1的電流密度下,鈉電池的電容量由201 mA h g-1提升至491 mA h g-1。在更進一步的應用下我們以MWCNT-wrapped SiP2 做為陽極,LiFePO4和Na2/3Ni1/3Mn2/3O2 分別為鋰電池與鈉電池的陰極組成鈕扣全電池及軟包全電池,並且成功的點亮了超過100顆三種不同顏色的LED燈。
SiP2 has a high specific theoretical capacity of 2902 mA h g-1 as an anode material for lithium ion batteries (LIBs) and 1788 mA h g-1sodium-ion batteries (SIBs), respectively, but demonstrated very poor cycling ability in the previous studies. Here, we report high performance SiP2 LIB and SIB anodes with good cycling by wrapping SiP2 with multi-wall carbon nanotube (MWCNT) on the surface of SiP2 via high energy ball milling. MWCNT provides a robust network to connect fragment SiP2 with surrounding electrical conductor and serve as an effective conductive agent. MWCNT-wrapped SiP2 shows high retention 93% (1622 mA h g-1 after 100 cycles) in lithium ion batteries (LIBs) at current density 0.5A g-1 and 132% (925 mA h g-1 after 200 cycles in sodium-ion batteries (SIBs) at current density 0.2A g-1 respectively). In addition, rate-capability of active material also be apparently enhanced during high current density (from 1149 to 1522 mA h g-1 in LIBs with current density 4A g-1 and from 201 to 491 mA h g-1 in SIBs with current density 2A g-1, respectively. Furthermore, to evaluate practical application of MWCNT-wrapped SiP2, coin-type full cell and pouch-type full cell were assembled to successfully light up more than one hundred LEDs with three different colors.
(1) Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 2011, 4, 3243-3262.
(2) Nitta, N.; Yushin, G. High‐Capacity Anode Materials for Lithium‐Ion Batteries: Choice of Elements and Structures for Active Particles. Part. Part. Syst. Charact. 2014, 31, 317-336.
(3) Hayner, C. M.; Zhao, X.; Kung, H. H. Materials for rechargeable lithium-ion batteries. Annu. Rev. Chem. Biomol. Eng. 2012, 3, 445-471.
(4) Zhang, W.-J. Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries. J. Power Sources 2011, 196, 877-885.
(5) Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.
(6) Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419-2430.
(7) Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272-288.
(8) Goriparti, S.; Miele, E.; De Angelis, F.; Di Fabrizio, E.; Zaccaria, R. P.; Capiglia, C. Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 2014, 257, 421-443.
(9) Kim, Y.; Ha, K.-H.; Oh, S. M.; Lee, K. T. High-Capacity Anode Materials for Sodium-Ion Batteries. Chem. Eur. J. 2014, 20, 11980-11992.
(10) Jian, Z.; Luo, W.; Ji, X. Carbon Electrodes for K-Ion Batteries. J. Am. Chem. Soc. 2015, 137, 11566-11569.
(11) Wen, Y.; He, K.; Zhu, Y.; Han, F.; Xu, Y.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 2014, 5.
(12) Kim, S.-W.; Seo, D.-H.; Ma, X.; Ceder, G.; Kang, K. Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries. Adv. Energy Mater. 2012, 2, 710-721.
(13) Ellis, B. L.; Nazar, L. F. Sodium and sodium-ion energy storage batteries. Curr. Opin. Solid State Mater. Sci. 2012, 16, 168-177.
(14) Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-Ion Batteries. Adv. Funct. Mater. 2013, 23, 947-958.
(15) Liu, Y.; Zhang, N.; Jiao, L.; Tao, Z.; Chen, J. Ultrasmall Sn Nanoparticles Embedded in Carbon as High-Performance Anode for Sodium-Ion Batteries. Adv. Funct. Mater. 2015, 25, 214-220.
(16) Nithya, C.; Gopukumar, S. rGO/nano Sb composite: a high performance anode material for Na+ ion batteries and evidence for the formation of nanoribbons from the nano rGO sheet during galvanostatic cycling. J. Mater. Chem. A 2014, 2, 10516-10525.
(17) Nitta, N.; Yushin, G. High-Capacity Anode Materials for Lithium-Ion Batteries: Choice of Elements and Structures for Active Particles. Part. Part. Syst. Charact. 2014, 31, 317-336.
(18) Chang, W.-C.; Tseng, K.-W.; Tuan, H.-Y. Solution Synthesis of Iodine-Doped Red Phosphorus Nanoparticles for Lithium-Ion Battery Anodes. Nano Lett. 2017, 17, 1240-1247.
(19) Abel, P. R.; Chockla, A. M.; Lin, Y.-M.; Holmberg, V. C.; Harris, J. T.; Korgel, B. A.; Heller, A.; Mullins, C. B. Nanostructured Si (1-x) Ge x for tunable thin film lithium-ion battery anodes. ACS nano 2013, 7, 2249-2257.
(20) Li, G.-A.; Wang, C.-Y.; Chang, W.-C.; Tuan, H.-Y. Phosphorus-Rich Copper Phosphide Nanowires for Field-Effect Transistors and Lithium-Ion Batteries. ACS nano 2016, 10, 8632-8644.
(21) Li, W.; Li, H.; Lu, Z.; Gan, L.; Ke, L.; Zhai, T.; Zhou, H. Layered phosphorus-like GeP5: a promising anode candidate with high initial coulombic efficiency and large capacity for lithium ion batteries. Energy Environ. Sci. 2015, 8, 3629-3636.
(22) Wang, L.; He, X.; Li, J.; Sun, W.; Gao, J.; Guo, J.; Jiang, C. Nano‐Structured Phosphorus Composite as High‐Capacity Anode Materials for Lithium Batteries. Angew. Chem. Int. Ed. 2012, 51, 9034-9037.
(23) Li, W.-J.; Chou, S.-L.; Wang, J.-Z.; Liu, H.-K.; Dou, S.-X. A new, cheap, and productive FeP anode material for sodium-ion batteries. Chem. Commun. 2015, 51, 3682-3685.
(24) Zhang, W.; Dahbi, M.; Amagasa, S.; Yamada, Y.; Komaba, S. Iron phosphide as negative electrode material for Na-ion batteries. Electrochem. Commun. 2016, 69, 11-14.
(25) Li, W.-J.; Yang, Q.-R.; Chou, S.-L.; Wang, J.-Z.; Liu, H.-K. Cobalt phosphide as a new anode material for sodium storage. J. Power Sources 2015, 294, 627-632.
(26) Bichat, M.-P.; Politova, T.; Pfeiffer, H.; Tancret, F.; Monconduit, L.; Pascal, J.-L.; Brousse, T.; Favier, F. Cu3P as anode material for lithium ion battery: powder morphology and electrochemical performances. J. Power Sources 2004, 136, 80-87.
(27) Kwon, H.-T.; Lee, C. K.; Jeon, K.-J.; Park, C.-M. Silicon Diphosphide: A Si-Based Three-Dimensional Crystalline Framework as a High-Performance Li-Ion Battery Anode. ACS nano 2016.
(28) Duveau, D.; Israel, S. S.; Fullenwarth, J.; Cunin, F.; Monconduit, L. Pioneer study of SiP 2 as negative electrode for Li-and Na-ion batteries. J. Mater. Chem. A 2016, 4, 3228-3232.
(29) Cui, Y.-H.; Xue, M.-Z.; Wang, X.-L.; Hu, K.; Fu, Z.-W. InP as new anode material for lithium ion batteries. Electrochem. Commun. 2009, 11, 1045-1047.
(30) Yu, Z.; Song, J.; Gordin, M. L.; Yi, R.; Tang, D.; Wang, D. Phosphorus-Graphene Nanosheet Hybrids as Lithium-Ion Anode with Exceptional High-Temperature Cycling Stability. Adv. Sci. 2015, 2, 1400020-n/a.
(31) Zhang, C.; Wang, X.; Liang, Q.; Liu, X.; Weng, Q.; Liu, J.; Yang, Y.; Dai, Z.; Ding, K.; Bando, Y.; Tang, J.; Golberg, D. Amorphous Phosphorus/Nitrogen-Doped Graphene Paper for Ultrastable Sodium-Ion Batteries. Nano Lett. 2016, 16, 2054-2060.
(32) Qian, J.; Qiao, D.; Ai, X.; Cao, Y.; Yang, H. Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. Chem. Commun. 2012, 48, 8931-8933.
(33) Kim, Y.; Park, Y.; Choi, A.; Choi, N.-S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T. An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries. Adv. Mater. 2013, 25, 3045-3049.
(34) Sun, J.; Zheng, G.; Lee, H.-W.; Liu, N.; Wang, H.; Yao, H.; Yang, W.; Cui, Y. Formation of stable phosphorus–carbon bond for enhanced performance in black phosphorus nanoparticle–graphite composite battery anodes. Nano Lett. 2014, 14, 4573-4580.
(35) Bai, A.; Wang, L.; Li, J.; He, X.; Wang, J.; Wang, J. Composite of graphite/phosphorus as anode for lithium-ion batteries. J. Power Sources 2015, 289, 100-104.
(36) Li, W.-J.; Chou, S.-L.; Wang, J.-Z.; Liu, H.-K.; Dou, S.-X. Simply Mixed Commercial Red Phosphorus and Carbon Nanotube Composite with Exceptionally Reversible Sodium-Ion Storage. Nano Lett. 2013, 13, 5480-5484.
(37) Yuan, D.; Cheng, J.; Qu, G.; Li, X.; Ni, W.; Wang, B.; Liu, H. Amorphous red phosphorous embedded in carbon nanotubes scaffold as promising anode materials for lithium-ion batteries. J. Power Sources 2016, 301, 131-137.
(38) Song, J.; Yu, Z.; Gordin, M. L.; Li, X.; Peng, H.; Wang, D. Advanced Sodium Ion Battery Anode Constructed via Chemical Bonding between Phosphorus, Carbon Nanotube, and Cross-Linked Polymer Binder. ACS nano 2015, 9, 11933-11941.
(39) Liu, G.; Wen, L.; Li, Y.; Kou, Y. Synthesis and electrochemical properties of P2-Na2/3Ni1/3Mn2/3O2. Ionics 2015, 21, 1011-1016.