簡易檢索 / 詳目顯示

研究生: 任頡
Ren, Jye
論文名稱: 微機電陀螺儀之設計與實現
Design and Implementation of MEMS Vibratory Gyroscopes
指導教授: 李昇憲
Li, Sheng-Shian
口試委員: 陳宗麟
Chen, Tsung-Lin
方維倫
Fang, Wei-Leun
羅炯成
Lo, Chiung-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 134
中文關鍵詞: 陀螺儀微機電濾波感測模態環耦合
外文關鍵詞: Gyroscope, MEMS, Filter-Sensing Mode, Ring Coupled Mode
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究包含微機電陀螺儀的設計、模擬、製作與量測,並且分別從結構及整體系統的角度探討設計理念、各項參數與應用規格之關係。本研究利用台積電CMOS-MEMS整合平台下線,設計濾波感測模態陀螺儀(Filter-Sensing Mode Gyroscope, 簡稱FSMG),預期能同時保有較大頻寬及較高敏感度;本研究也以SOI製程設計、製作環耦合陀螺儀(Ring Coupled Gyroscope, 簡稱RCG),此陀螺儀在同尺寸中能有較大的電容傳感面積,並保有環結構的優勢,如:抗加速度、振動的能力,以及先天頻率匹配的特性,具有潛力應用至下一代陀螺儀。製作完成之環耦合陀螺儀之共振頻位於約135 kHz,兩共振頻之差異最小為13 Hz,達成∆f/f≅0.0096%之結果。在真空、空氣中的Q值分別約為3000-10000、30-60。本研究也以運算放大器開發了用於控制與量測微機電陀螺儀之印刷電路板,RCG搭配此電路板達成驅動模態的自我振盪,並且在旋轉平台上於常溫、常壓量得之敏感度為2.2 mV/°/s,而Angle Random Walk為15.8°/√hr。


    This work reports the design, simulation, fabrication, and measurement of MEMS vibratory gyroscopes. The relationship between specification and parameters is also discussed from the viewpoint of the whole system. The first design, Filter-Sensing Mode Gyroscope (FSMG), based on TSMC’s MEMS Platform can reach larger bandwidth with sufficient sensitivity. The theory shows that the parameters in FSMG are not sensitive to the environmental damping coefficient. Moreover, the tuning fork structure in FSMG provides better shock resistance and error reduction. The robustness makes FSMG very suitable for automotive applications. The second design based on an SOI fabrication process is also developed. Ring Coupled Gyroscope (RCG) takes advantages of the symmetric ring structure, while increasing the transduction areas. This design makes the ring structure without increasing its size or reducing its transducer’s gap to achieve satisfactory capacitive coupling coefficient. By adopting the in-plane and n = 3 mode, the resonant frequencies (i.e., driving and sensing modes) of RCG are inherently matched. Therefore, it has great potential for the next generation gyroscopes. The fabricated RCG has the smallest frequency split as ∆f/fres≅0.0096% at the resonant frequency of 135 kHz. The quality factor is about 3000-10000 in vacuum and 30-60 in air, respectively. The PCB for the proposed gyroscope is also designed for control and measurement purpose. The driving loop with AGC is achieved. The measured sensitivity is 2.2 mV/°/s, and the angle random walk is 15.8°/√hr.

    第一章 前言 1 1.1 研究背景 1 1.2 規格參數 3 1.3 文獻回顧 6 1.4 研究動機 9 1.5 本文架構 10 第二章 理論分析 12 2.1 整體系統架構 12 2.2機械動態模型 13 2.3電容式致動與感測 20 2.3.1 梳狀電極驅動 20 2.3.2 平行電容板驅動 21 2.3.3 運動電流 22 2.3.4 彈簧軟化效應 23 2.4電路模型 25 2.4.1 轉阻放大器 25 2.4.1 正交解調 26 2.4.2 振盪電路 27 2.4.3 彈簧調整與頻率匹配 28 2.4.4 正交誤差補償 29 2.4.5 力回授 32 2.5 規格預測 32 第三章 濾波感測模態陀螺儀 38 3.1 機械動態模型 38 3.1.1 頻寬與感測度設計 45 3.1.2 低速耦合彈簧 47 3.2結構設計 49 3.2.3 彈簧設計 50 3.2.4 去耦合框架 52 3.2.5 結構模擬結果 53 3.3規格預測與比較 59 3.3.1 濾波感測模態陀螺儀的特性與限制 59 3.3.2 規格預測與比較 61 第四章 環耦合陀螺儀 65 4.1 機械動態模型 67 4.2 結構設計 75 4.3 規格預測 77 第五章 系統級模擬 79 5.1 Simulink模擬 79 5.1.1 濾波感測模態陀螺儀 79 5.1.2 環耦合陀螺儀之自振迴路 87 5.2 LTSPICE模擬 88 5.2.1 微機電陀螺儀的等效電路模型 88 5.2.2以PLL振盪之陀螺儀系統模擬 92 第六章 製程 94 6.1 TSMC CMOS-MEMS整合製程 94 6.2 SOI製程 95 6.2.1 製程介紹 95 6.2.1 製程問題與結果 96 第七章 量測 103 7.1 量測與控制用電路板 103 7.2 結構特性量測 105 7.3 結構整合放大電路 112 7.4 驅動模態自振迴路 117 7.5 角速度量測 122 7.5 量測結論 127 第八章 結論及未來工作 128 8.1 結論 128 8.2 未來工作 129 參考文獻 130

    [1] N. Yazdi, F. Ayazi, and K. Najafi, “Micromachined Inertial Sensors,” Proceedings of the IEEE, Vol.86, No.8, pp.1640-1659, August 1998.
    [2] A. Sharma, M. F. Zaman, and F. Ayazi, “A sub-0.2 °/hr bias drift micromechanical silicon gyroscope with automatic CMOS mode-matching,” IEEE Journal of Solid-State Circuits, Vol. 44, No. 5, pp.1593-1608, 2009.
    [3] I. P. Prikhodko, S. A. Zotov, A. A. Trusov, A. M. Shkel, “Foucault pendulum on a chip: Rate integrating silicon MEMS gyroscope,” Sensors and Actuators A: Physical, Vol. 177, pp. 67-78, April 2012.
    [4] IEEE Standard Specification Format Guide and Test Procedure for Coriolis Vibratory Gyros, IEEE Std. 1431-2004, pp.1-69, 2004.
    [5] W. K. Sung, M. Dalal, and F. Ayazi, “A 3MHz spoke gyroscope with wide bandwidth and large dynamic range,” IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Hong Kong, pp. 104-107, Jan. 2010.
    [6] W. K. Sung, M. Dalal, and F. Ayazi, “A mode-matched 0.9 MHz single proof-mass dual-axis gyroscope," Tech. Digest of the 16th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers'11), Beijing, China, pp. 2821-2824, June 2011.
    [7] A. N. Shirazi, G. Casinovi, M. Dalal, and F. Ayazi, “Combined phase readout and self-calibration of MEMS gyroscopes,” International Conference on Solid-state Sensors, Actuators, and Microsystems (Transducers'13), Barcelona, Spain, pp. 960-963, June 2013.
    [8] S. A. Zotov, A. A. Trusov, A. M. Shkel, “High-range angular rate sensor based on mechanical frequency modulation," IEEE/ASME Journal of Microelectromechanical Systems, vol. 21, no. 2, pp. 398-405, April 2012.
    [9] S. E. Alper and T. Akin, “A single-crystal silicon symmetrical and decoupled MEMS gyroscope on an insulating substrate,” J. Microelectromechanical Systems, vol. 14, no. 4, pp. 707-717, August 2005.
    [10] E. Tatar, “Quadrature Error Compensation and Its Effects on the Performance of Fully Decoupled MEMS Gyroscopes,” M.S. Thesis, Middle East Technical University, September 2010.
    [11] M. H. Kline, Y. C. Yeh, B. Eminoglu, I. I. Izyumin, M. Daneman, D. A. Horsley, and B. E. Boser, “MEMS gyroscope bias drift cancellation using continuous-time mode reversal,” Solid-State Sensors, Actuators, Microsyst. Conf, pp. 1-15, Jun. 2013.
    [12] C. Guo, E. Tatar, and G. K. Fedder, “Large-displacement parametric resonance using a shaped comb drive,” in Proc. 26th Int. Conf. Micro Electro Mechanical Systems (MEMS), Taipei, pp. 173-176, Jan. 2013.
    [13] C. Acar and A. M. Shkel “Inherently robust micromachined gyroscopes with 2-DoF sense-mode oscillator” Journal of Microelectromechanical System, vol. 15, no. 2, pp 380-387, April 2006.
    [14] S. Sung, W. Sung, Y. J. Lee, S. Yun, and C. Kim, “On the mode matched control of MEMS gyroscope via phase domain approach,” IEEE/ASME Trans. Mechatronics, vol. 14, no. 4, pp. 446-455, 2009
    [15] S. Sonmezoglu, S. E. Alper, and T. Akin, “An automatically mode-matched MEMS gyroscope with wide and tunable bandwidth”, Journal of Microelectromechanical System, vol. 23, no. 2, pp.284-297, 2014
    [16] G. K. Fedder, Simulation of microelectromechanical systems, Thesis, Univ. of California at Berkeley, 1994.
    [17] F. Ayazi and K. Najafi, “A HARPSS polysilicon vibrating ring gyroscope,” IEEE/ASME Journal of Microelectromechanical System, Jan. 2001, pp. 169-179
    [18] C.-O. Chang, G.-E. Chang, C.-S, Chou, W.-T.C. Chien, and P.-C. Chen, “In-plane free vibration of a single-crystal silicon ring”, International Journal of Solids and Structures 45 (2008) 6114-6132.
    [19] G. He and K. Najafi, “A single-crystal silicon vibrating ring gyroscope,” in Proc. IEEE MEMS Workshop, Las Vegas, NV, Jan. 2002, pp. 718-721.
    [20] C. H. Ahn, E. J. Ng, V. A. Hong, Y. Yang, B. J. Lee, M. W. Ward, and T. W. Kenny, “Geometric compensation of (100) single crystal silicon disk resonating gyroscope for mode-matching,” TRANSDUCERS, pp. 1723-1726, 2013.
    [21] D. Senkal, S. Askari, M. J. Ahamed, E. J. Ng, V. Hong, Y. Yang, C. H. Ahn, T. W. Kenny, and A. M. Shkel, “100k Q-factor toroidal ring gyroscope implemented in wafer-level epitaxial silicon encapsulation process,” in Proc. 27th Int.Conf. Micro Electro Mechanical Systems (MEMS), San Francisco, CA, Jan. 2014 pp. 24-27.
    [22] H. Johari, J. Shah, and F. Ayazi, “High frequency XYZ-axis single-disk silicon gyroscope”, in Proc. 21st IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2008), Tucson, AZ, Jan. 2008, pp. 856-859.
    [23] J. Y. Cho, J.-K. Woo, J. Yan, R. L. Peterson, and K. Najafi, “Fused-silica micro birdbath resonator gyroscope (μ-BRG)”, Journal of Microelectromechanical System, vol. 23, no. 1, pp. 66-77, Dec. 2013.
    [24] Sergei A. Zotov, Alexander A. Trusov, Andrei M. Shkel, “Three-dimensional spherical shell resonator gyroscope fabricated using wafer-scale glassblowing,” IEEE JMEMS Letters, In Press, Available online 23 March 2012.
    [25] S. W. Yoon, S. Lee, and K. Najafi, “Vibration sensitivity analysis of MEMS vibratory ring gyroscopes,” Sens. Actuators A, 171 (2011) 163-177.
    [26] R. D. Blevins, Formulas for Natural Frequency and Mode Shape, Van Nostrand Reinhold, New York (1979).
    [27] B. Eminoglu, S. E. Alper, and T. Akin, “An optimized analog drive-mode controller for vibratory MEMS gyroscope,” Proc. 25th Eurosens., vol. 25, pp. 1309-1312, 2011.
    [28] http://www.mcubemems.com/technology/monolithic-mems/
    [29] M. Richardson and D. Formenti, Parameter estimation from frequency response measurements using rational fraction polynomials, In 1st IMAC Conference, Orlando, Florida, USA. (1982) 1-15.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE