研究生: |
高偉倫 Kao, Wei-Lun |
---|---|
論文名稱: |
介電泳微流道生醫晶片應用於提高小鼠之體外受精率 Dielectrophoretic Microfluidic Biochip to Improve Fertility Rate of ICR Mouse In Vitro |
指導教授: |
饒達仁
Yao, Da-Jeng |
口試委員: |
徐文祥
Hsu, Wen-Syang 饒達仁 Yao, Da-Jeng 劉承賢 Liu, Cheng-Hsien |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 121 |
中文關鍵詞: | 卵母細胞 、精蟲 、介電泳 、體外受精 |
外文關鍵詞: | Oocyte, Sperm, Dielectrophoresis, In Vitro Fertilization |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一人工協助生殖之生醫晶片,透過介電泳力與微流道捕捉ICR老鼠的卵母細胞(Oocyte)與精子細胞(Sperm)之生醫晶片,為降低定位時透過接觸力對卵母細胞本身所造成的影響與破壞,本研究將使用非接觸式介電泳力的方式達到卵母細胞的捕捉與體外受精。藉由利用正介電泳力捕捉與定位卵母細胞,以及同時捕捉具有活動力的精子於卵母細胞周圍,來增加卵母細胞周圍的精子濃度與精子總數,對於患有少精症(Oligozoospermia)或是精子活動力較差的男性患者而言,藉由此介電泳力捕捉的方法亦可增加其體外受精的機率,稱之為體外受精技術 (In Vitro Fertilization, IVF)。
本文所提出的介電泳現象,主要是透過一非均勻結構來產生非均勻交流電場,再根據卵母細胞、精子細胞與培養液間之介電係數與導電度的差異,使卵母細胞與精子在非均勻電場受誘導而產生不同偶極矩,使其產生正介電泳效應,而卵母細胞與精子受到正介電泳力的影響會往電場密度較高的地方移動,達到捕捉卵母細胞與精子的效果。此介電泳微流道晶片可於低精子總數(3,000隻)的情況下,提高體外受精率至17.2±7.5 %,比傳統液珠式體外受精的方法提升約21.1 %;且胚胎可正常發育至囊胚期(20.59 %)。
The oviduct is imitated with a biochip system for microfluidic dielectrophoresis (DEP). We show the trapping of an ICR mouse oocyte using the insulator structure of the microchannel in our dielectrophoresis system. To decrease the impact and destruction of the oocyte and the sperm, we adopted a positive dielectrophoretic force to manipulate the oocyte. To imitate a fertilization in vitro (IVF), the oocyte became positioned through the DEP force in the microfluidic channel; then we trapped many more sperm near the oocyte with a positive dielectrophoretic force to enhance the probability of natural fertilization. The oocyte was hence able to become positioned in the micro-channel. At the same time, the sperm swam in the same direction so that many more sperm were trapped near the oocyte to enhance the probability of natural fertilization. Primarily through a non-uniform electric field, the dielectrophoretic force induced the distribution of the electric field.
According to the differences between the relative permittivity and conductivity of the particle and solutions, a difference of dipole moment formed in the electric field. With varied polarization characteristics of the ability of the particles and the buffer solution to generate the positive or negative dielectrophoresis effect, the particles were affected by the DEP force to move to the region with a large or small density of electric field to achieve the goal of oocyte positioning. The positive dielectrophoretic response of an oocyte was exhibited with applied voltage 10 Vpp and frequency 1 MHz; the oocyte was affected by the positive DEP force to move to the region with a large density of electric field. To understand where the positions with a large and small distribution of the electric field in the microchannel, we used commercial numerical software (CFDRC-ACE+) to calculate the location of a large electric field. The pattern of the insulating structure was fabricated with SU8-3050 to generate a non-uniform electric field to trap the oocyte with positive dielectrophoresis. The result of our experiment indicated that a positive DEP served to drive the position of the oocyte and the sperm and to natural fertilization. This DEP microfluidic chip could improve the fertility rate from 14.2±7.5 % to 17.2±7.5 % at the low total sperm number.
M. N. Mascarenhas, S. R. Flaxman, T. Boerma, S. Vanderpoel, and G. A. Stevens, "National, Regional, and Global Trends in Infertility Prevalence Since 1990: A Systematic Analysis of 277 Health Surveys," PLOS Medicine, pp. 1-12, 2012.
2. R. G. Edwards, "Towards Single Births After Assisted Reproduction Treatment," Reprod Biomed Online, vol. 7, pp. 506-508, 2003.
3. R. P. Dickey, "The Relative Contribution of Assisted Reproductive Technologies and Ovulation Induction to Multiple Births in The United States 5 Years After the Society for Assisted Reproductive Technology/American Society for Reproductive Medicine Recommendation to Limit the Number of Embryos Transferred," Fertil Steril, vol. 88, pp. 1554-1561, 2007.
4. V. M. Allen, R. D. Wilson, and A. Cheung, "Pregnancy Outcomes After Assisted Reproductive Technology," J Obstet Gynaecol Can, vol. 28, pp. 220-250, 2006.
5. P. E. Setti, M. Cavagna, E. Albani, G. Morreale, P. V. Novara, A. Cesana, and V. Parini, "Outcome of Assisted Reproductive Technologies After Different Embryo Transfer Strategies," Reprod Biomed Online, vol. 11, pp. 64-70, 2005.
6. K. Patricia, N. Robert, and S. Jonathan, "The Economic Impact of the Assisted Reproductive Technologies," Nat Cell Biol, pp. 29-32, 2002.
7. D. K. Gardner, W. B. Schoolcraft, L. Wagley, T. Schlenker, J. Stevens, and J. Hesla, "A Prospective Randomized Trial of Blastocyst Culture and Transfer in In-Vitro Fertilization," Human Reproduction, vol. 13, pp. 3434-3440, 1998.
8. K. Khoshmanesh, S. Nahavandi, S. Baratchi, A. Mitchell, and K. Kalantar-zadeh, "Dielectrophoretic Platforms for Bio-microfluidic Systems," Biosensors and Bioelectronics, vol. 26, pp. 1800-1814, 2011.
9. M. B. Wheeler, E. M. Walters, and D. J. Beebe, "Toward Culture of Single Gametes: The Development of Microfluidic Platforms for Assisted Reproduction, " Theriogenology, vol. 68, pp. S178-S189, 2007.
10. G. D. Smith, S. Takayama, and J. E. Swain, "Rethinking In Vitro Embryo Culture: New Developments in Culture Platforms and Potential to Improve Assisted Reproductive Technologies," Biology of Reproduction, vol. 86, pp. 62, 61-10, 2012.
11. M. Meseguer, U. Kruhne, and S. Laursen, "Full In Vitro Fertilization Laboratory Mechanization: Toward Robotic Assisted Reproduction?," Fertility and Sterility, vol. 97, pp. 1277-1286, 2012.
12. Z. Gagnon, J. Mazur, and H. C. Chang, "Integrated AC Electrokinetic Cell Separation in a Closed-loop Device, Lab on a Chip, vol. 10, pp. 718-726, 2010.
13. J. Gao, M. L. Y. Sin, T. T. Liu, V. Gau, J. C. Liao, and P. K. Wong, "Hybrid Eelectrokinetic Manipulation in High-conductivity Media," Lab on a Chip, vol. 11, pp. 1770-1775, 2011.
14. S. H. Ling, Y. C. Lam, and C. H. Kua, "Particle Streaming and Separation Using Dielectrophoresis Through Discrete Periodic Microelectrode Array," Microfluidics and Nanofluidics, vol. 11, pp. 579-591, 2011.
15. I. F. Cheng, C. C. Chung, and H. C. Chang, "High-throughput Electrokinetic Bioparticle Focusing Based on a Travelling-Wave Dielectrophoretic Field," Microfluidics and Nanofluidics, vol. 10, pp. 649-660, 2011.
16. E. Choi, B. Kim, and J. Park, "High-Throughput Microparticle Separation Using Gradient Traveling Wave Dielectrophoresis," Journal of Micromechanics and Microengineering, vol. 19, 2009.
17. K. Ino, A. Ishida, K. Y. Inoue, M. Suzuki, M. Koide, T. Yasukawa, H. Shikua, and T. Matsue, "Electrorotation Chip Consisting of Three-Dimensional Interdigitated Array Electrodes, Sensors and Actuators B-Chemical, vol. 153, pp. 468-473, 2011.
18. B. Çetin, and D. Li, "Dielectrophoresis in Microfluidics Technology," Electrophoresis, vol. 32, pp. 2410-2427, 2011.
19. R. C. Gallo-Villanueva, N. M. Jesus-Perez, J. I. Martinez-Lopez, A. Pacheco, and B. H. Lapizco-Encinas, "Assessment of Microalgae Viability Employing Insulator-based Dielectrophoresis," Microfluidics and Nanofluidics, vol. 10, pp. 1305-1315, 2011.
20. C. P. Jen, and T. W. Chen, "Trapping of Cells by Insulator-based Dielectrophoresis Using Open-top Microstructures," Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 15, pp. 1141-1148, 2009.
21. C. P. Jen, and T. W. Chen, "Selective Trapping of Live and Dead Mammalian Cells Using Insulator-Based Dielectrophoresis within Open-Top Microstructures," Biomedical Microdevices, vol. 11, pp. 597-607, 2009.
22. C. P. Jen, C. T. Huang, and H. Y. Shih, "Hydrodynamic Separation of Cells Utilizing Insulator-Based Dielectrophoresis," Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol. 16, pp. 1097-1104, 2010.
23. C. P. Jen, C. T. Huang, and H. Y. Shih, "Focusing of Biological Cells Utilizing Negative Dielectrophoretic Force Generated by Insulating Structures," Microelectronic Engineering, vol. 87, pp. 773-777, 2010.
24. R. R. Henkel, and W. B. Schill, "Sperm Preparation for ART," Reproductive Biology and Endocrinology, vol. 1, pp. 22, 2003.
25. W. Jason, C. Yaokuang, B. Kimberly, S. Gary, T. Shuichi, and L. Joerg, "A Surface-Modified Sperm Sorting Device with Long-Term Stability," Biomedical Microdevices, vol. 8, pp. 99-107, 2006.
26. Y. N. Lin, P. C. Chen, R. G. Wu, L. C. Pan, and F. G. Tseng, "High-throughput Sperm Sorting in a Micro Diffuser Type Fluidic System," IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 1153-1156, 2013.
27. C. Leung, L. Zhe, N. Esfandiari, R. F. Casper, and S. Yu, "Automated Sperm Immobilization for Intracytoplasmic Sperm Injection," IEEE Transactions on Biomedical Engineering, vol. 58, pp. 935-942, 2011.
28. B. Shao, L. Shi, J. Nascimento, E. Botvinick, M. Ozkan, M. Berns, and S. Esener, "High-throughput Sorting and Analysis of Human Sperm with a Ring-shaped Laser Trap," Biomedical Microdevices, vol. 9, pp. 361-369, 2007.
29. B. Cho, T. Schuster, X. Zhu, D. Chang, G. D. Smith, and S. Takayama, "A Microfluidic Device for Separating Motile Sperm From Nonmotile Sperm Via Inter-Streamline Crossings," Biology 2nd Annual International IEEE-EMB Special Topic Conference on Microtechnologies in Medicine & Amp, pp. 156-159, 2002.
30. G. Fuhr, T. Müller, V. Baukloh, and K. Lucas, "High-Frequency Electric Field Trapping of Individual Human Spermatozoa," Human Reproduction, vol. 13, pp. 136-141, 1998.
31. E. Rosales-Cruzaley, P. A. Cota-Elizondo, D. Sánchez, and B. Lapizco-Encinas, "Sperm Cells Manipulation Employing Dielectrophoresis," Bioprocess and Biosystems Engineering, vol. 36, pp. 1353-1362, 2013.
32. J. K. Valley, M. Garcia, P. Swinton, S. Neale, H. H. Yin, A. Jamshidi, and M. C. Wu, "Optoelectronic Tweezers for Quantitative Assessment of Embryo Developmental Stage," IEEE 23th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 943-946, 2010.
33. J. K. Valley, P. Swinton, W. J. Boscardin, T. F. Lue, P. F. Rinaudo, M. C. Wu, and M. M. Garcia, "Preimplantation Mouse Embryo Selection Guided by Light-Induced Dielectrophoresis," PLoS ONE, vol. 5, pp. e10160, 2010.
34. W. Choi, J. S. Kim, D. H. Lee, K. K. Lee, D. B. Koo, and J. K. Park, " Dielectrophoretic Oocyte Selection Chip for In Vitro Fertilization," Biomedical Microdevices, vol. 10, pp. 337-345, 2008.
35. N. Tsukada, K-i. Kudoh, M. Budiman, A. Yamamoto, T. Higuchi, M. Kobayashi, K. Sato, K. Oishi, and K. Lidia, "Development of Automated Nuclear Transplantation System," Mamm Ova Res, vol. 18, pp. 106-109, 2001.
36. R. Ma, L. Xie, C. Han, K. Su, T. Qiu, L. Wang, G. Huang, W. Xing, J. Qiao, J. Wang, and J. Cheng, "In Vitro Fertilization on a Single-Oocyte Positioning System Integrated with Motile Sperm Selection and Early Embryo Development," Analytical Chemistry, vol, 83, pp. 2964-2970, 2011.
37. C. Han, Q. Zhang, R. Ma, L. Xie, T. Qiu, L. Wang, K. Mitchelson, J. Wang, G. Huang, J. Qiao, and J. Cheng, "Integration of Single Oocyte Trapping, In Vitro Fertilization and Embryo Culture in a Microwell-Structured Microfluidic Device," Lab on a Chip, vol. 10, pp. 2848-2854, 2010.
38. R. S. Suh, X. Zhu, N. Phadke, D. A. Ohl, S. Takayama, and G. D. Smith, "IVF within Microfluidic Channels Requires Lower Total Numbers and Lower Concentrations of Sperm," Human Reproduction, vol. 21, pp. 477-483, 2006.
39. H. Y. Tseng, D. J. Yao, C. H. Tien, C. J. Li, and H. Y. Huang, "Using Control Microfluidic System to Enhance the Sperm Motility Sorting Efficiency," IEEE 6th International Conference on Nano/Molecular Medicine and Engineering (NANOMED), pp. 47-50, 2012.
40. H. Y. Huang, T. L. Wu, H. R. Huang, C. J. Li, H. T. Fu, Y. K. Soong, M. Y. Lee, and D. J. Yao, "Isolation of Motile Spermatozoa with a Microfluidic Chip Having a Surface-Modified Microchannel," Journal of Laboratory Automation, vol. 19, pp. 91-99, 2014.
41. S. Raty, E. M. Walters, J. Davis, H. Zeringue, D. J. Beebe, S. L. Rodriguez-Zas, and M. B. Wheeler, "Embryonic Development in the Mouse ss Enhanced Via Microchannel Culture," Lab on a Chip, vol. 4, pp. 186-190, 2004.
42. J. E. Swain, and G. D. Smith, "Advances in Embryo Culture Platforms: Novel Approaches to Improve Preimplantation Embryo Development Through Modifications of the Microenvironment. Human Reproduction Update. vol. 17, pp. 541-557, 2011.
43. Y. S. Heo, L. M. Cabrera, C. L. Bormann, C. T. Shah, S. Takayama, and G. D. Smith, "Dynamic Microfunnel Culture Enhances Mouse Embryo Development and Pregnancy Rates," Human Reproduction, vol. 25, pp. 613-622, 2010.
44. W. L. Ong, J. S. Kee, A. A. Ajay, N. Ranganathan, K. C. Tang, and L. Yobas, "Development of a Microchip-based Fertilization and Cultivation System for in Vitro Production of Blastocysts, MicroTAS, 2006.
45. H. C. Zeringue, I. K. Glasgow, D. J. Beebe, J. T. Lyman, and M. B. Wheeler, " Micro Fluidic Single Embryo Culture Systems in PDMS," 21st Annual Conference and the 1999 Annual Fall Meetring of the Biomedical Engineering Society (BMES/EMBS), vol. 852, pp. 851, 1999.
46. Y. Fukui, E. S. Lee, and N. Araki, "Effect of Medium Renewal During Culture in Two Different Culture Systems on Development to Blastocysts from In Vitro Produced Early Bovine Embryos," Journal of Animal Science, vol. 74, pp. 2752-2758, 1996.
47. T. Otoi, L. Willingham, T. Shin, D. C. Kraemer, and M. Westhusin, "Effects of Oocyte Culture Density on Meiotic Competence of Canine Oocytes," Reproduction, vol. 124, pp. 775-781, 2002.
48. M. Lane, and D. K. Gardner, "Effect of Incubation Volume and Embryo Density on the Development and Viability of Mouse Embryos In Vitro," Human Reproduction, vol. 7, pp. 558-562, 1992.
49. H. Bagis, and H. O. Mercan, "Effect of Culture Medium Volume on the Development and Viability of Microinjected or Noninjected One-Cell Hybrid and CD-1 Strain Mouse Embryos," Turk J Vet Anim Sci, pp. 507-512, 2004.
50. A. K. Malekshah, and A E. Moghaddam, "The Effect of Culture Medium Volume on In Vitro Development of Mouse Embryos," Iranian Journal of Reproductive Medicine, vol. 3, pp. 79-82, 2005.
51. B. Heindryckx, A. Rybouchkin, V. D. E. Josiane, and M. Dhont, "Effect of Culture Media on In Vitro Development of Cloned Mouse Embryos," Cloning, vol. 3, pp. 41-50, 2001.
52. M. A. Ibrahim, H. I. Al-Ahmad, and W. H. Mohammed, "The Effect of Different Culture Media on In Vitro Fertilization of Mice," Journal of Al-Nahrain University, vol. 13, pp. 147-150, 2010.
53. A. Karimpor Malekshah, and A. Esmailnejad Moghaddam, "The Effect of Culture Medium Volume on In Vitro Development of Mouse Embryos," 2012
54. J. Melin, A. Lee, K. Foygel, D. E. Leong, S. R. Quake, and M. W. M. Yao, "In Vitro Embryo Culture in Defined, Sub-Microliter Volumes," Developmental Dynamics, vol. 238, pp. 950-955, 2009.
55. Y. S. Hur, J. H. Park, E. K. Ryu, S. J. Park, J. H. Lee, S. H. Lee, J. Yoon, S. H. Yoon, C. Y. Hur, W. D. Lee, and J. Lim, "Effect of Micro-Vibration Culture System on Embryo Development," Journal of Assisted Reproduction and Genetics, vol. 30, pp. 835-841, 2013.
56. P. F. Rinaudo, G. Giritharan, S. Talbi, A. T. Dobson, and R. M. Schultz, "Effects of Oxygen Tension on Gene Expression in Preimplantation Mouse Embryos," Fertility and sterility, vol. 86, pp. 1265.e1261-1265.e1236, 2006.
57. J. C. M. Dumoulin, C. J. J. Meijers, M. Bras, E. Coonen, J. P. M. Geraedts, and J. L. H. Evers, "Effect of Oxygen Concentration on Human In-Vitro Fertilization and Embryo Culture," Human Reproduction, vol. 14, pp. 465-469, 1999.
58. P. Quinn, and G. M. Harlow, "The Effect of Oxygen on The Development of Preimplantation Mouse Embryos In Vitro," Journal of Experimental Zoology, vol. 1, pp. 73-80, 1978.
59. D. Feil, M. Lane, C. T. Roberts, R. L. Kelley, L. J. Edwards, J. G. Thompson, and K. L. Kind, "Effect of Culturing Mouse Embryos Under Different Oxygen Concentrations on Subsequent Fetal and Placental Development," The Journal of Physiology, pp. 87-96, 2006.
60. T. Koike, K. Matsuura, K. Naruse, and H. Funahashi, "Culture with a Tilting Device in Chemically Defined Media During Meiotic Maturation and Early Development Improves the Quality of Blastocysts Derived from Matured and Fertilized Porcine Oocytes," Journal of Reproduction and Development, vol. 56, pp. 552-557, 2010.
61. R. Pethig, "Review Article—Dielectrophoresis: Status of the Theory, Technology, and Applications," Biomicrofluidics, vol. 4, 2010.
62. H. A. Pohl, "The Motion and Precipitation of Suspensoids in Divergent Electric Fields," Journal of Applied Physics, vol. 22, pp. 869-871, 1951.
63. T. B. Jones TB, "Electromechanics of Particles Cambridge University Press," pp. 34-81, 1995.
64. W. Choi, J. S. Kim, D. H. Lee, K. K. Lee, D. B. Koo, and J. K. Park, " Dielectrophoretic Oocyte Selection Chip for In Vitro Fertilization," Biomedical Microdevices, vol. 10, pp. 337-345, 2008.
65. N. Demierre, T. Braschler, P. Linderholm, U. Seger, H. V. Lintel, and P. Renaud, "Characterization and Optimization of Liquid Electrodes for Lateral Dielectrophoresis," Lab on a Chip, vol. 7, pp. 355-365, 2007.
66. H. Morgan, A. G. Izquierdo, D. Bakewell, N. G. Green, and A. Ramos, "The Dielectrophoretic and Travelling Wave Forces Generated by Interdigitated Electrode Arrays: Analytical Solution Using Fourier Series," Journal of Physics D: Applied Physics, vol. 34, pp. 1553-1561, 2001.
67. R. Sasaki, T. Nakayama, and T. Kato, "Microelectrophoretic Analysis of Changes in Protein Expression Patterns in Mouse Oocytes and Preimplantation Embryos," Biology of Reproduction, vol. 60, pp. 1410-1418, 1999.
68. B. E. Slentz, N. A. Penner, and F. E. Regnier, "Capillary Electrochromatography of Peptides on Microfabricated Poly (Dimethylsiloxane) Chips Modified by Cerium(IV)-Catalyzed Polymerization," Journal of Chromatography A, vol. 948, pp. 225-233, 2002.
69. P. B. Pedro, S. E. Zhu, N. Makino, T. Sakurai, K. Edashige, and M. Kasai, "Effects of Hypotonic Stress on the Survival of Mouse Oocytes and Embryos at Various Stages," Cryobiology, vol. 35, pp. 150-158, 1997.
70. S. F. Mullen, Rosenbaum, J. K. Critser, "The Effect of Osmotic Stress on the Cell Volume, Metaphase II Spindle and Developmental Potential of In Vitro Matured Porcine Oocytes," Cryobiology, vol. 54, pp. 281-289, 2007.
71. M. B. Sørensen, I. A. Bergdahl, N. H. I. Hjøllund, J. P. E. Bonde, M. Stoltenberg, and E. Ernst, "Zinc, Magnesium and Calcium in Human Seminal Fluid: Relations to Other Semen Parameters and Fertility," Molecular Human Reproduction, vol. 5, pp. 331-337, 1999.
72. F. Lahnsteiner, "The Effect of K+, Ca2+, and Mg2+ on Sperm Motility in The Perch, Perca Fluviatilis," Fish Physiology and Biochemistry, vol. 40, pp. 469-480, 2014.
73. S. Markoulaki, S. Matson, A. L. Abbott, and T. Ducibella, "Oscillatory CaMKII Activity in Mouse Egg Activation," Developmental Biology, vol. 258, pp. 464-474, 2003.
74. A. C. F. Perry, T. Wakayama, I. M. Cooke, and R. Yanagimachi, "Mammalian Oocyte Activation by the Synergistic Action of Discrete Sperm Head Components: Induction of Calcium Transients and Involvement of Proteolysis," Developmental Biology, vol. 217, pp. 386-393, 2000.
75. S. F. Ma, X. Y. Liu, D. Q. Miao, Z. B. Han, X. Zhang, Y. L. Miao, R. Yanagimachi, and J. H. Tan, "Parthenogenetic Activation of Mouse Oocytes by Strontium Chloride: A Search for the Best Conditions," Theriogenology, vol. 64, pp. 1142-1157, 2005.
76. S. K. Idris, R. B. Abdullah, E. Wan, K. Wan, and M. M. Rahman, "Comparison between Different Combinations of Chemical Treatment on Parthenogenetic Activation of Mouse Oocytes and Its Subsequent Embryonic Development," Animal Cells and Systems, vol. 17, pp. 196-202, 2013.
77. K. Versieren, B. Heindryckx, S. Lierman, J. Gerris, and P. D. Sutter, " Developmental Competence of Parthenogenetic Mouse and Human Embryos After Chemical or Electrical Activation," Reproductive BioMedicine Online, vol. 21, pp. 769-775, 2010.
78. V. Mishra, A. K. Misra, and R. Sharma, "A Comparative Study of Parthenogenic Activation and In Vitro Fertilization of Bubaline Oocytes," Animal Reproduction Science, vol. 103, pp. 249-259, 2008.
79. G. Siracusa, D. G. Whittingham, M. Molinaro, and E. Vivarelli, "Parthenogenetic Activation of Mouse Oocytes Induced by Inhibitors of Protein Synthesis," Journal of Embryology and Experimental Morphology, vol. 43, pp. 157-166, 1978.
80. X. D. Zhang, J. X. Liu, W. W. Liu, Y. Gao, W. Han, S. Xiong, L. H. Wu, and G. N. Huang, "Time of Insemination Culture and Outcomes of In Vitro Fertilization: A Systematic Review and Meta-Analysis," Human Reproduction Update, vol. 19, pp. 685-695, 2013.
81. M. Dirnfeld, D. Bider, M. Koifman, I. Calderon, and H. Abramovici, "Shortened Exposure of Oocytes to Spermatozoa Improves In-Vitro Fertilization Outcome: A Prospective, Randomized, Controlled Study," Human Reproduction, vol. 14, pp. 2562-2564, 1999.
82. S. Coskun, G. L. Roca, A. M. Elnour, H. A. Mayman, M. G. Johannes, Hollanders, and K. A. Jaroudi, "Effects of Reducing Insemination Time in Human In Vitro Fertilization and Embryo Development by Using Sibling Oocytes," Journal of Assist Reprod Genet, vol. 15, pp. 605-608, 1998.
83. L. Gianaroli, M. C. Magli, A. P. Ferraretti, A. Fiorentino, E. Tosti, S. Panzella, and B. Dale, "Reducing the Time of Sperm-Oocyte Interaction in Human In-Vitro Fertilization Improves the Implantation Rate," Human Reproduction, vol. 11, pp. 166-171, 1996.
84. S. Kattera, and C. Chen, "Short Coincubation of Gametes in In Vitro Fertilization Improves Implantation and Pregnancy Rates: A Prospective, Randomized, Controlled Study," Fertility and Sterility, vol. 80, pp. 1017-1021, 2003.
85. M. Dirnfeld, H. Shiloh, D. Bider, E. Harari, M. Koifman, S. L. Baratz, and H. Abramovici, "Aprospective Randomized Controlled Study of the Effect of Short Coincubation of Gametes During Insemination on Zona Pellucida Thickness," Gynecol Endorinol, vol. 17, pp. 397-403, 2003.
86. S. P. Lin, R. K. K. Lee, J. T. Su, M. H. Li, and Y. M. Hwu, "The Effects of Brief Gamete Co-incubation in Human In Vitro Fertilization," Journal of Assist Reprod Genetics, vol. 17, pp. 344-348, 2000.
87. M. Bungum, L. Bungum, and P. Humaidan, "A Prospective Study, Using Sibling Oocytes, Examining the Effect of 30 Seconds Versus 90 Minutes Gamete Co-Incubation In IVF," Human Reproduction, vol. 21, pp. 518-523, 2006.
88. M. Lundqvist, U. Johansson, O. Lundkvist, K. Milton, C. Westin, and N. Simberg, "Reducing the Time of Co-Incubation of Gametes in Human In-Vitro Fertilization Has No Beneficial Effects," Reproductive Biomedicine Online, vol. 3, pp. 21-24, 2001.
89. V. B. Lange, C. Sifer, K. Pocaté, A. Ziyyat, B. M. Pont, R. Porcher, J. N. Hugues, and J. P. Wolf, "Short Gamete Co-Incubation During In Vitro Fertilization Decreases the Fertilization Rate and Does Not Improve Embryo Quality: A Prospective Auto Controlled Study," Journal of Assisted Reproduction Genetics, vol. 25, pp. 305-310, 2008.
90. K. Niwa, and M. C. Chang, "Optimal Sperm Concentration and Minimal Number of Spermatozoa for Fertilization In Vitro of Rat Eggs," Journal Of Reproduction And Fertility, vol. 40, pp. 471-474, 1974.
91. Y. Tsunoda, and M. C. Chang, "Penetration of Mouse Eggs In Vitro: Optimal Sperm Concentration and Minimal Number of Spermatozoa," Journal Of Reproduction And Fertility, vol. 44, pp. 139-142, 1975.
92. L. R. Fraser, and L. M. Drury, "The Relationship Between Sperm Concentration and Fertilization In Vitro of Mouse Eggs," Biology of Reproduction, vol. 13, pp. 513-518, 1975.
93. A. K. Siddiquey, and J. Cohen, "In-Vitro Fertilization in the Mouse and the Relevance of Different Sperm/Egg Concentrations and Volumes," Journal of Reproduction and Infertility, vol. 66, pp. 237-242, 1982.
94. H. Glasser, and G. Fuhr, "Cultivation of Cells Under Strong AC-Electric Field—Differentiation Between Heating and Trans-Membrane Potential Effects," Bioelectrochemistry and Bioenergetics, vol. 47, pp. 301-310, 1998.
95. C. I. Kowalczuk, and R. D. Saunders, "Dominant Lethal Studies in Male Mice After Exposure to a 50-Hz Electric Field," Bioelectromagnetics, vol. 11, pp. 129-137, 1990.
96. K. Yanagida, H. Katayose, H. Yazawa, Y. Kimura, A. Sato, H. Yanagimachi, and R. Yanagimachi, "Successful Fertilization and Pregnancy Following ICSI and Electrical Oocyte Activation," Human Reproduction, vol. 14, pp. 1307-1311, 1999.
97. K. Yasuyuki, and R. Yanagimachi, "Mouse Oocytes Injected with Testicular Spermatozoa or Round Spermatids can Develop into Normal Offspring," Development, vol. 121, pp. 2397-2405, 1995.
98. M. Onodera, and Y. Tsunoda, "Parthenogenetic Activation of Mouse and Rabbit Eggs by Electric Stimulation In Vitro," Gamete Research, vol. 22, pp. 277-283, 1989.
99. 李勁松, 韓之明, 朱子玉, 王敏康, 廉莉, 陳大元, "幾種因素對電刺激誘導小鼠卵母細胞孤雌活化的影響," 動物學報, vol. 48, pp. 501-505, 2002.
100. K. Matsuura, N. Hayashi, Y. Kuroda, C. Takiue, R. Hirata, M. Takenami, Y. Aoi, N. Yoshioka, T. Habara, and T. Mukaida, "Improved Development of Mouse and Human Embryos Using a Tilting Embryo Culture System," Reproductive BioMedicine Online, vol. 20, pp. 358-364, 2010.
101. J. E. Swain, D. Lai, S. Takayama, and G. D.mith, "Thinking Big by Thinking Small: Application of Microfluidic Technology to Improve ART," Lab on a Chip, vol. 13, pp. 1213-1224, 2013.
102. P. Fauque, F. Mondon, F. Letourneur, M. A. Ripoche, L. Journot, S. Barbaux, L. Dandolo, C. Patrat, J. P. Wolf, P. Jouannet, H. Jammes, and Vaiman, "In Vitro Fertilization and Embryo Culture Strongly Impact the Placental Transcriptome in the Mouse Model," PLoS ONE, vol. 5, pp. e9218, 2010.