研究生: |
馮憲平 Hsien Ping Feng |
---|---|
論文名稱: |
電鍍銅在化學機械研磨製程中缺陷機制的研究 Defect behaviors of electroplated copper films during chemical mechanical polishing |
指導教授: |
萬其超
Chi-Chao Wan 王詠雲 Yung-Yun Wang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 147 |
中文關鍵詞: | 電鍍銅 、化學機械研磨 、缺陷機制 、研磨速率 、氧化 |
外文關鍵詞: | copper plating, CMP, defect, removal rate, oxidation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇論文主要探討,(1)化學機械研磨時pits缺陷形成的機制與鍍層結構和雜質的關聯性(2)研磨後extrusion缺陷的氧化機制與光激發反應,這兩部份是以往論文中中較少深入研究的部份,補強對於這兩種缺陷的了解有將助於整體銅製程良率的提昇。
首先,我們改變電流密度與鍍層雜質,發現隨著銅膜(111)/(200)的比例上升,pits缺陷與研磨速率下降,證明fcc中的最密堆積的(111)在化學機械研磨時有較好的抗腐蝕性。再者,銅鍍膜的雜質愈多,pits缺陷亦會增加,但研磨速率的變化不顯著。另外,幾何效應也會造成雜質的集中進而影響到dishing的行為。
其次,extrusion缺陷是銅的氧化物且由銅晶界開始形成,會隨時間長大到一定的大小,數量也會隨時間增加。實驗結果顯示extrusion缺陷數隨著鍍層雜質增加而增加,且光照會提高費米能階以激發更多的電子而加速缺陷氧化的成長速率,還有,晶界必需有一定量的雜質才能被光機發成核成長為缺陷。
Knowledge of the defect behaviors of copper-interconnect surface is important for continuous yield improvement. This study is to focus on the defect behavior in copper damascene process, aiming at, (a) pits-formation mechanism related to structure and impurities of deposits during polishing (b) extrusion-formation mechanism for copper oxidation and light illumination after polishing.
First, we investigate the effect of current density and impurities incorporated in blanket and pattern wafer by potentiodynamic polarization method, X-ray diffraction and secondary ion mass spectroscopy. Defect count is decided by optical scan method and SEM reviewing. Removal rate and corroded pits are found to decrease with increasing (111)/(200) ratio because (111), the closed packed plane of the fcc structure, has strong chemical resistance during polishing. Furthermore, incorporated impurities, such as carbon, chloride and sulfur, tend to weaken grain boundaries to generate more corroded pits, but do not affect removal rate. In addition, geometric constraint induces concentrated impurities to restrict copper grain growth and induce fast oxide growth rate, resulting in large dishing effect on the wafer.
Second, copper-extrusion defect is initiated at grain boundary on interconnect surface and its size is enlarged with time and finally reaches a fixed value over a period of time after chemical mechanical polishing. The extrusion is composed of derivatives of copper oxide, not being observed under nitrogen environment, and increases with time after polishing. Auger analysis was used to compare the impure atoms between locations with and without extrusion, which proves that impurity is an important factor for initial growth. It has been verified that growth rate of copper-oxide extrusion increases with increasing impurity content of the copper deposit. Moreover, illumination significantly enhances and accelerates the growth rate of copper-oxide at the initial nucleation stage by providing more electron carriers and acceptors. It has also been discovered that illumination effect is related to impurities of grain boundaries, which need to be sufficiently enhanced by illumination to generate nucleation sites.
1. P.B.Chate and C.R. Fuller, in Semiconductor Silicon-1981, H. Huff, R. Kriegler, Y. Takeishi (Eds), Electrochemical Soc., Princeton, NJ, 680 (1981).
2. A.K. Sinha, J.A. Cooper Jr., and H.J. Levinstein, Electron Device Latt., EDL-3, 90 (1982).
3. S.P. Murarka, IEEE-IEDM 1979 Tech, Digest, IEEE, New York, 454 (1979).
4. S.P. Jeng, R.H. Havemann, and M.C. Chang, Mater. Res. Soc. Symp. Proc., 337, 25 (1994).
5. National Technology Roadmap for Semiconductors (NTRS), SIA, 1994.
6. B.J. Howard and C. Steinbruchel, Appl. Phys. Lett., 59 (8), 914 (1999).
7. Stephen A. Campbell, The Science and Engineering of Microelectronic Fabrication, Oxford University Press, Inc., 411 (1996).
8. Philip H. Rieger, Electrochemistry, 371 (1993).
9. A. Braun, “Copper Electroplating Enters Mainstream Processing”, Semiconductor International, April, 58 (1999).
10. T. Taylor, T. Ritzdorf, F. Lindberg, and B. Carpenter, Solid State Technology, Nov., 47 (1998).
11. Kurt R. Hebert, J. Electrochem. Soc., 148 (11), C726 (2001).
12. Shigeyoshi Nakayama, Atsushi Kimura, Masahiro Shibata, Susumu Kuwabata, and Toshiyuki Oskai, J. Electrochem. Soc., 148 (11), B467 (2001).
13. J. M. E. Harper, C. Cabral, Jr., P. C. Andricacos, L. Gignac, I. C. Noyan, K. P. Rodbell, and C. K. Hu, J. Appl. Phys., 5, 2516 (1999).
14. S. H. Brongersma, E. Richard, I. Vervoort, H. Bender, W. Vandervorst, S. Lagrange, G. Beyer, and K. Maex, J. Appl. Phys., 86, 3642 (1999).
15. Mauro J. Kobrinsky, Carl V. Thompson, and Mihal E. Gross, J. Appl. Phys., 89, 91 (2001).
16. J. J. Toomey, S. Hymes, and S. P. Muraka, Appl. Phys. Lett., 66 (16), 2074 (1995).
17. E. M. Zielinski, R. P. Vinci, and J. C. Bravman, Appl. Phys. Lett., 67 (8), 1078 (1995).
18. Chun-Li Liu, Appl. Phys. Lett., 80, 763 (2002).
19. Tohru Hara, Hiroki Toida, and Yasuhiro Shimura, Electrochemical and Solid-State Lett., 6 (7), 98 (2003).
20. Tom Ritzdorf, Lyndon Graham, Shu Jin, Chun Mu, and David Fraser, IEEE, IITC 98 (1998).
21. C. Lingk, and M. E. Gross, J. Appl. Phys., 84, 5547 (1998).
22. Haebum Lee, S. Simon Wong, and Sergey D. Loptain,, J. Appl. Phys. 93, 3796 (2003).
23. C. Detavernier, S. Rossnagel, C. Noyan, S. Guha, C. Cabral, Jr., and C. Lavoie, J. Appl. Phys. , 94, 2874 (2003).
24. Tohru Hara, Hiroki Toida, and Yasuhiro Shimura, J. Electrochem. Soc., 6 (7), G98 (2003).
25. H. L. Wei., R. K. Zheng, G. H. Wen, and X. X. Zhang, Appl. Phys. Lett., 80, 2290 (2002).
26. Qing-Tang Jiang, and Michael E. Thomas, J. Vac. Sci. Technol., B 19, 762 (2001).
27. Mauro J. Kobrinsky, Carl V. Thompson and Mihal E. Gross, Appl. Phys. Lett., 89, 91 (2001).
28. C. K. Hu, L. Gignac, S. G. Malhotra, R. Rosenberg, and S. Boettcher, 78, 904 (2001).
29. C. L. Gan, C. V. Thompson, K. L. Pey, W. K. Choi, H. L. Tay, B. Yu, and M. K. Radhakrishnan, 79, 4592 (2001).
30. Linda Vanasupa, Young Chang Joo, and Paul R. Besser, J. Appl. Phys., 85, 2583 (1999).
31. M. W. Lane, C. E. Murray, F. R. McFeely, P. M. Vereecken, and R. Rosenberg, Appl. Phys. Lett., 83, 2330 (2003).
32. Tohru Hara, and Hiroki Toida, J. Electrochem. Soc., 5 (10), C102 (2003)
33. V. A. Vas’ko, L. Tabakovic, and S.C. Riemer, Electrochem. Solid-State Lett., 6, C100 (2003).
34. D. P. Tracy and D. B. Knorr, J. Electron. Mater., 22, 611 (1993).
35. S. M. Rossnagel, and T. S. Kuan, J. Vac. Sci. Technol, A20, 1911 (2002).
36. C. Detavernier, D. Deduytsche, R. L. Van Meirhaeghe, J. De Baerdemaeker, and C. Dauwe, Appl. Phys. Lett., 82, 1863 (2003).
37. E. M. Zielinski, R. P. Vinci, and J. C. Bravman, J. Appl. Phys., 76, 4515 (1994).
38. W. P. Dow, H. S. Huang, and Zack Lin, J. Electrochem. Soc., 6 (9), C134 (2003).
39. A. Jindal and S. V. Babu, J. Electrochem. Soc. 151, C709 (2004).
40. Peter M. Hoffmann, Aleksandar Radisic, and Peter C. Searson, Journal of The Electrochemical Society, 147 (7), 2576 (2000).
41. S. C. Chang, J. M. Shieh, B. T. Dai, and M. S. Feng, J. Electrochem. Soc., 5 (6), C67 (2002).
42. Tohru Hara, Kohji Sakata, and Yuji Yoshida, J. Electrochem. Soc., 5 (3), C41 (2002).
43. S. H. Brongersma, E. Kerr, I. Vervoort, A. Saerens, and K. Maex, J. Mater. Res., 17, 582 (2002).
44. W.Zang, J. Electrochem. Soc. 152, C832 (2005).
45. T. P. Moffat, B. Baker, D. Wheeler, and D. Josell, J. Electrochem. Soc., 6 (4), C59 (2003).
46. J. M. Steigerwald, S. P Murarka, R. J. Gutmann, Chemical Mechanical Planarization of Microelectronic Materials, John Wiley & Sons, Inc., New York, 1997 p. 4.
47. Stephen A. Campbell, The Science and Engineering of Microelectronic Fabrication, Oxford University Press, Inc., 1996 p. 411.
48. F. B. Kaufman, D. B. Thompson, R. E. Broadie, M. A. Jaso, W. L. Guthrie, D. J. Pearson, M. B. Small, J. Electrochem. Soc., 138, 3460 (1991).
49. B. Zhao and F. G. Shi, Electrochem. Solid-State Lett., 2, 145 (1999).
50. T. Haque, S. Balakumar, A. S. Kumar, and M. Rahman, J. Electrochem. Soc., 152,G417 (2005).
51. A. R. Mazaheri and G. Ahmadiz, J. Electrochem. Soc., 150, G233 (2003).
52. W. T. Tseng and Y. L. Wang, J. Electrochem. Soc., 144, L15 (1997).
53. Yoshio Homma, J. Electrochem. Soc., 153, G587 (2006).
54. J. Sorooshian, J. Electrochem.Soc., 151, G85 (2004).
55. N. Gitis, Semiconductor Factech, 18, 125 (2003).
56. E. Paul, J. Electrochem. Soc., 148, G359 (2001).
57. E. Paul and R. Vacassy, J. Electrochem. Soc., 150, G739 (2003).
58. Kei-Wei Chen and Ying Lang Wang, J. Electrochem. Soc., 154, H41 (2007).
59. Q. Luo, S. Ramarajan, and S. V. Babu, Thin Solid Films, 335, 160 (1998).
60. A. Ishikawa, H. Matsuo, and T. Kikkawa, J. Electrochem. Soc., 152, G695 (2005).
61. Subrahamanya Mudhivarthi, Norm Gitis, Suresh Kuiry, Michael Vinogradov, and Ashok Kumar, J. Electrochem. Soc., 153, G372 (2006).
62. J. Sorooshian, Electrochem. Solid-State Lett., 7, G222 (2004).
63. J. Sorooshian, Electrochem. Solid-State Lett., 151, G85 (2004).
64. S. Mudhviarthi, Electrochem. Solid-State Lett., 8, G241 (2005).
65. Sikder, J. Electron. Mater., 30, 1520 (2001).
66. G.. Xu and H. Liang, J. Electrochem. Soc., 151 (10), G688 (2004).
67. C. Detavernier, D. Deduytsche, R.L. Van Meirhaeghe, J. De Baerdemaeker, and C. Dauwe, Appl. Phys. Lett., 82,1863 (2003).
68. T. Du, D. Tamboli, V. Desai, and S. Seal, J. Electrochem. Soc., 151, G230 (2004).
69. Serdar Aksu and Fiona M. Doyle, J. Electrochem. Soc., 149, G352 (2002).
70. J. Hernadez, P. Wrschka, and G. S. Oehriein, J. Electrochem. Soc., 148, G389 (2001).
71. R. Kummert and W. Stumm, Colloid Interface Sci.,, 75, 373 (1980).
72. P. Wrschka, J. Hernandez, Y. Hsu, T. S. Kuan, G. S. Oehrlein, H. J. Sun, D. A. Hansen, J. King, and M. A. Fury, J. Electrochem. Soc., 146, 2689 (1999).
73. G. Xu, H. Liang, J. Zhao, and Y. Li, J. Electrochem. Soc., 151, G688 (2004).
74. H. Hirabayashi, M. Kinoshita, H. Kaneko, N. Hayasska, M. Huguchicl, K. Mase, and J. Oshima, in Proceedings of the 1st International Chemical-Mechanical Planarization for VLS/ULSI Multilevel Interconnection Conference CMP-MIC, Institute for Microelectronics Interconnection, p. 119 (1996).
75. Z. Li, K. Ina, P. Lefevre, I. Koshiyama, and A. Philipossian, J. Electrochem. Soc., 152, G299 (2005).
76. V. Brusic, M. A. Frisch, B. N. Eldridge, E. P. Novak, F. B. Kaufman, B. M. Rush, and G. S. Frankel, J. Electrochem. Soc., 138, 2253 (1991).
77. Ashraf T. Al-Hinai and Kwadwo Osseo-Asare, Electrochem. Solid-State Lett., 6, B23 (2003).
78. J. Hernandez, P. Wrschka, and G. S. Orhriein, V. Brusic, M. A. Frisch, B. N. Eldridge, E. P. Novak, F. B. Kaufman, B. M. Rush, and G. S. Frankel, J. Electrochem. Soc., 148, G389 (2001).
79. Yi-Koan, Dae-Hong Eom, Sang-Ho Lee, Tae-Gon Kim, Jin-Goo Park, and Ahmed A. Busnaina, V. Brusic, M. A. Frisch, B. N. Eldridge, E. P. Novak, F. B. Kaufman, B. M. Rush, and G. S. Frankel, J. Electrochem. Soc., 151, G756 (2004).
80. Akira Ishikawa, Hisanori Matsuo, and Takamaro Kikkawa, V. Brusic, M. A. Frisch, B. N. Eldridge, E. P. Novak, F. B. Kaufman, B. M. Rush, and G. S. Frankel, J. Electrochem. Soc., 152, G695 (2005).