簡易檢索 / 詳目顯示

研究生: 黃銘蓉
Huang, Mingrong
論文名稱: 像素藝術的顏色盤合成
Pixel Art Color Palette Synthesis
指導教授: 李潤容
Lee, Ruen-Rone
口試委員: 曾紹崟
Shau-Yin Tseng
楊永仁
Yung-Jen Yang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 63
中文關鍵詞: 像素藝術顏色盤顏色量化合成
外文關鍵詞: pixel art, color palette, color quantization, synthesis
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 像素藝術是一種特殊藝術風格,只用少量的顏色來表現。受限於顏色盤的長度,顏色的選取對創作的作品至關重要。但要從一張具有成千上萬的真彩色參考圖中挑選出有限的顏色組成顏色盤並不是一件易事。因此我們提出一個自動系統,能夠從一張參考圖中挑選出合適的顏色組成顏色盤以供使用。套用這個顏色盤裡的顏色,藝術家和藝術新手能很快的獲得一張低分辨率且近似於最終像素藝術的圖,然後根據自己的觀點進行微調以得到滿意的作品。此外,當要根據一張平面像素藝術構建LEGO像素藝術時,我們提供了一個顏色轉換,使得轉換出來的顏色在保持逼真度的同時,盡可能的維持住對比度。


    Pixel art is created with a limited color palette, which greatly affects the overall visual quality. It is difficult to pick out a limited number of colors, which define the color palette of an image, from a given image with hundreds of thousands of colors. We propose an automatic system, which adopts some guidelines a pixel art artist will apply, to effectively synthesize the color palette of a pixel art from a given image. Based on our approach, both artists and novices can easily attain a low-resolution image which is very close to a final pixel art. The user can then refine it to a satisfied final pixel art according to their perspective. Furthermore, we propose a palette transform for constructing a LEGO pixel art from a given pixel art while keeping the contrasts and colors as close as possible to the original pixel art provided.

    摘要 III Abstract IV Chapter 1 Introduction 9 Chapter 2 Related Work 13 Chapter 3 Workflow 15 3.1 Terminologies 15 3.2 Approach 17 Chapter 4 Method 20 4.1 Image Downsampling 20 4.2 Base Colors Derivation 21 4.3 Ramp Derivation 23 4.4 Color Reduction 26 Chapter 5 Results 30 Chapter 6 Quality Assessment 36 6.1 Quantitative Quality Assessment 36 6.2 User Study 39 Chapter 7 Palette Transform 43 Chapter 8 Future Work 48 Chapter 9 Conclusion 51 References 52 Appendix A: Quantitative Quality Assessment 56 Appendix B: 1st Round User Study 62 Appendix C: 2nd Round User Study 73

    [1]. Wiki: Super Mario Bros.
    http://en.wikipedia.org/wiki/Super_Mario_Bros.
    [2]. Derek Yu, Pixel Art Tutorial, http://makegames.tumblr.com/post/42648699708/pixel-art-tutorial
    [3]. Studio Purloux, Tutorials — The Rundown
    http://purloux.com/artwork/tutorials/rundown/
    [4]. Paul S. Heckbert. Color image quantization for frame buffer display, ACM SIGGRAPH Computer Graphics, Vol. 16, No. 3, pp. 297-307, 1982.
    [5]. Dean Clark, Color quantization using octrees, Dr. Dobb’s Journal Software Tools for the Professional Programmer, Vol. 21, No. 1, pp. 54-57 and 102-104, 1996.
    [6]. M. Emre Celebi, Improving the performance of k-means for color quantization, Image and Vision Computing, Vol. 29, No. 4, pp. 260-271, 2011.
    [7]. Tiffany C. Inglis , Craig S. Kaplan, Pixelating vector line art, Proceedings of the Symposium on Non-Photorealistic Animation and Rendering (NPAR), pp. 21-28, 2012.
    [8]. Tiffany C. Inglis , Daniel Vogel , Craig S. Kaplan, Rasterizing and antialiasing vector line art in the pixel art style, Proceedings of the Symposium on Non-Photorealistic Animation and Rendering (NPAR), pp. 25-32, 2013.
    [9]. Johannes Kopf, Dani Lischinski, Depixelizing pixel art, ACM Transactions on Graphics (TOG), Vol. 30, No. 4, p. 99, ACM, 2011.
    [10]. Yonghao Yue, Kei Iwasaki, Bing-Yu Chen, Yoshinori Dobashi, Tomoyuki Nishita, Pixel Art with Refracted Light by Rearrangeable Sticks, Computer Graphics Forum, Vol. 31, No. 2, pp. 575-582, 2011.
    [11]. Timothy Gerstner, Doug DeCarlo, Marc Alexa, Adam Finkelstein, Yotam Gingold, Andrew Nealen, Pixelated image abstraction, Proceedings of the Symposium on Non-Photorealistic Animation and Rendering (NPAR), pp. 29-36, 2012.
    [12]. Timothy Gerstner, Doug DeCarlo, Marc Alexa, Adam Finkelstein, Yotam Gingold, Andrew Nealen, Special Section on Expressive Graphics: Pixelated image abstraction with integrated user constraints, Computer and Graphics, Vol. 37, No. 5, pp. 333-347, 2013.
    [13]. Johannes Kopf, Ariel Shamir, Pieter Peers, Content-Adaptive Image Downscaling, ACM Transactions on Graphics (TOG), Vol. 32, No. 6, p. 173, 2013.
    [14]. Les Forges Pixel Art Course
    http://opengameart.org/content/chapter-5-color-palettes
    [15]. Pixel Joint: http://www.pixeljoint.com/forum/forum_posts.asp?TID=11299
    [16]. Mark’s Pixel Art tutorial: http://www.natomic.com/hosted/marks/mpat/approach.html
    [17]. Medli20, Pixel Art and Stuff, http://medli20.deviantart.com/art/Pixel-art-tutorial-214350064
    [18]. Lab Color Space,
    http://en.wikipedia.org/wiki/Lab_color_space
    [19]. Image Scaling, http://en.wikipedia.org/wiki/Image_scaling
    [20]. OpenCV resize(), http://docs.opencv.org/modules/imgproc/doc/geometric_transformations.html?highlight=resize#resize
    [21]. J. B. MacQueen, Some methods for classification and analysis of multivariate observations, Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, Vol.1, pp.281-297, 1967
    [22]. S. J. Wan, P Prusinkewicz, S. K. M. Wong, Variance-based color image quantization for frame buffer display, Color Research and Application, Vol. 15, No. 1, pp. 52-58, 1990.
    [23]. Image Quality Assessment http://tdistler.com/iqa/index.html
    [24]. Paintshop Pro, http://product.corel.com/help/PhotoPro/540244831/Main/EN/Doc/wwhelp/wwhimpl/common/html/wwhelp.htm#href=Decreasing_color_depth.html&single=true
    [25]. Vladimir Kolmogorov, Ramin Zabih, What Energy Functions Can Be Minimized via Graph Cuts?, IEEE transactions on Pattern Analysis and Machine Intelligence, Vol. 26, No. 2, pp. 147-159, 2004.
    [26]. Yuri Boykov, Olga Veksler, Ramin Zabih, Fast Approximate Energy Minimization via Graph Cuts, IEEE transactions on Pattern Analysis and Machine Intelligence, Vol. 23, No. 11, pp. 1222-1239, 2001.
    [27]. Nikos Komodakis, Georgios Tziritas, Approximate Labeling via Graph-Cuts Based on Linear Programming, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 29, No.8, pp. 1436-1453, 2007.
    [28]. Nikos Komodakis, Georgios Tziritas, Nikos Paragios, Performance vs Computational Efficiency for Optimizing Single and Dynamic MRFs: Setting the State of the Art with Primal Dual Strategies, Computer Vision and Image Understanding, Vol. 112, No. 1, pp. 14-29, 2008.
    [29]. Color banding: http://en.wikipedia.org/wiki/Colour_banding
    [30]. Dithering: http://en.wikipedia.org/wiki/Dithering

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE