研究生: |
林閔洲 Ming-Jhou Lin |
---|---|
論文名稱: |
以三相功率模組建構具升壓及功因校正充電能力切換式磁阻馬達驅動系統之開發 Developmoent of a switched reluctance motor drive with voltage boosting and PFC charging capabilities using three-phase power modules |
指導教授: |
廖聰明
Chang-Ming Liaw |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 137 |
中文關鍵詞: | 切換式磁阻馬達 、智慧型功率模組 、前端轉換器 、兩象限 、升壓 、速度控制 、模式追蹤控制器 、切換式整流器 、功因校正 、充電器 |
外文關鍵詞: | Switched-reluctance motor, intelligent power module, front-end converter, two-quadrant, voltage boosting, speed control, model following control, switch-mode rectifier, power factor correction, charger |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在開發一以三相功率模組建構之具升壓及功因校正充電功能之蓄電池供電切換式磁阻馬達驅動系統,並從事其控制。首先建構所提之馬達驅動系統,其所用修正型米勒(Miller)轉換器係以兩個三相智慧型功率模組中之五個臂之功率開關構成。而藉由適當之換相調控及速度控制機構設計,所建馬達驅動系統可正常運轉且具有良好之操控特性。此有利於總體馬達驅動功率級之簡化與小型化。
接著本論文從事所建馬達驅動系統之升壓及功因校正充電研究。於此將二個三相功率模組中剩餘之一個臂功率開關安排形成一個兩象限直流-直流前端轉換器,將其安置於蓄電池與馬達驅動系統轉換器間。在馬達驅動模式,前級轉換器操作為升壓型直流-直流轉換器,以建立良好調控與可提升之直流鏈電壓供給馬達驅動級,增進高速運轉性能。於充電模式,將馬達線圈與功率模組中之開關妥善安排組接形成一個三相單開關切換式整流器,而前級轉換器操作為降壓型直流-直流轉換器,綜合兩功率級組成升-降壓型功因校正充電器。並藉由適當之切換及動態控制以得具有優良交流入電電力品質之充電控制。本論文詳細介紹所建馬達驅動系統必要控制機構之設計與實現,並以一些模擬及實測結果顯示其正常操控與驅控性能。
This thesis presents the development and control of a battery powered switched reluctance motor (SRM) drive using two three-phase power modules having the voltage boosting and PFC charging capabilities. First, the SRM drive with its modified Miller converter being constructed using five legs in two three-phase intelligent power modules (IPM) are designed and implemented. The whole SRM drive power stage can be simplified and miniaturized, and it can be normally operated with satisfactory performance through the properly designed commutation and speed control schemes.
Then the voltage boosting and PFC charging for the developed SRM drive are studied. The remaining one leg of the IPM is arranged to form a two-quadrant front DC-DC converter located between the battery and the SRM converter. In motor driving mode, the front-end converter is operated in DC-DC boost converter to establish well-regulated and boostable DC link voltage for the followed SRM drive. Significant performance enhancement in higher speed can be achieved. In idle charging mode, the SRM windings and the two IPMs are arranged to form a three-phase single-switch (3P1SW) switch-mode rectifier (SMR). And the front-end converter is operated as a buck type DC-DC converter. The boost-buck PFC charger is then constructed by the 3P1SW SMR and the buck converter. The battery charging control with rather good line drawn power quality can be achieved via proper switching and dynamic controls. The design and realization of the necessary control schemes in the established motor drive system are presented. And its normal operations and driving performances are verified by some simulated and experimental results.
REFERENCES
A. Fundamentals of SRM
[1] T. J. E. Miller, Switched reluctance motors and their control, Clarendon Press, Oxford, 1993.
[2] R. Krishnan, Switched reluctance motor drives: modeling, simulation, analysis, design, and applications, New York: CRC Press, 2001.
[3] H. H. Moghbelli and M. H. Rashid, “Performance review of the switched reluctance motor drives,” IEEE Proc. Circuits and Systems, 1991, vol. 1, pp. 162-165.
[4] H. C. Lovatt, M. C. Clelland and J. M. Stephenson, “Comparative performance of singly salient reluctance, switched reluctance and induction motors,” in Proc. IEE Conf. Elect. Mach. and Drives, 1997, pp. 361-365.
[5] P. Rafajdus, V. Hrabovcova and P. Hudak, “Investigation of losses and efficiency in switched reluctance motor,” in Proc. EPE-PEMC, 2006, pp. 296-301.
[6] A. V. Radun, “Design considerations for the switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 31, no. 5, pp. 1079-1087, 1995.
[7] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002.
[8] J. Hur, G. H. Kang, J. Y. Lee, J. P. Hong and B. K. Lee, “Design and optimization of high torque, low ripple switched reluctance motor with flux barrier for direct drive,” in Proc. IAS, 2004, vol. 1, pp.401-408.
[9] P. Pillay, Y. Liu, W. Cai and T. Sebastian, “Multiphase operation of switched reluctance motor drives,” in Proc. IEEE Conf. Ind. Appl., 1997, vol. 1, pp. 310- 317.
[10] H. A. Ashour, D. S. Reay and B. W. Williams, “Shunt-excited doubly salient 8/6-switched reluctance machine,” IEE Proc. Elect. Power Applicat., 2000, vol. 147, no. 5, pp. 391-401.
[11] M. T. DiRenzo, M. K. Masten and C. P. Cole, “Switched reluctance motor control techniques,” in Proc. American Control Conf., 1997, vol. 1, pp. 272-277.
[12] K. I. Hwu, Development of a switched reluctance motor drive, Ph.D. Dissertation, Deparment of Electrical Engineering, National Tsing Hua University, ROC, 2001.
B. Converters and Voltage Boosting Circuits
[13] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Applicat., vol. 27, no. 6, pp. 1034-1049, 1991.
[14] D. H. Jang, I. Husain and M. Ehsani, “Modified (n+1) switch converter for switched reluctance motor drives,” in Proc. IEEE PESC, 1995, vol. 2, pp. 1121-1127.
[15] D. H. Jang, “The converter topology with half bridge inverter for switched reluctance motor drives,” in Proc. IEEE ISIE, 2001, vol. 2, pp. 1387-1392.
[16] S. J. Watkins, J. Corda, and L. Zhang, “Multilevel asymmetric power converters for switched reluctance machines,” in Proc. Power Elect. Mach. and Drives, 2002, no. 487, pp. 195-200.
[17] V. V. Deshpande and Y. L. Jun, “New converter configurations for switched reluctance motors wherein some windings operate on recovered energy,” IEEE Trans. Ind. Applicat., vol. 38, no. 6, pp. 1558-1565, 2002.
[18] A. M. Hava, V. Blasko and T. A. Lipo, “A modified C-dump converter for variable reluctance machines,” IEEE Trans. Ind. Applicat., vol. 28, no. 5, pp. 1017-1022, 1992.
[19] S. Bolognani, E. Ognibeni and M. Zigliotto, “Sliding mode control of the energy recovery chopper in a C-dump switched reluctance motor drive,” IEEE Trans. Ind. Applicat., vol. 29, no.1, pp. 181-186, 1993.
[20] S. Mir, I. Husain and M.E. Elbuluk, “Energy-efficient C-dump converters for switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, pp. 912-921, 1997.
[21] K. J. Tseng, S. Cao and J. Wang, “A new hybrid C-dump and buck-fronted converter for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 47, no. 6, pp. 1228-1236, 2000.
[22] K. D. Kim, D. J. Shin and U. Y. Huh, “Application modified C-dump converter for industrial low voltage SRM,” in Proc. IEEE Int. Symp. on Ind. Electron., 2001, vol. 3, pp. 1804-1809.
[23] S. Chan, “Performance enhancement of single-phase switched reluctance motor by DC link voltage boosting,” IEE Proc. Elect. Power Applicat., 1993, vol. 140, no. 5, pp. 316-322.
[24] Y. G. Dessouky, B. W. Williams and J. E. Fletcher, “A novel power converter with voltage-boosting capacitors for a four-phase SRM drive,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 815-823, 1998.
[25] A. Dahmane, F. Meebody and F. M. Sargos, “A novel boost capacitor circuit to enhance the performance of the switched reluctance motor,” in Proc. IEEE PESC, 2001, vol. 2, pp. 844-849.
[26] M. Barnes and C. Pollock, “Forward converters for dual voltage switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 16, no. 1, pp. 83-91, 2001.
[27] K. I. Hwu and C. M. Liaw, “ DC-link voltage boosting and switching control for switched reluctance motor drives,” IEE Proc. Elect. Power Applicat., 2000, vol. 147, no. 5, pp. 337-344.
[28] H. L. Huy, K. Slimani and P. Viarouge, “A current-controlled quasi-resonant converter for switched-reluctance motor,” IEEE Trans. Ind. Electron., vol. 38, no. 5, pp.355-362, 1991.
[29] Y. Murai, J. Cheng and M. Yoshida, “New soft-switched reluctance motor drive circuit,” in Proc. IEEE Ind. Applicat., 1997, vol. 1, pp. 676-681.
[30] K. T. Chau, T. W. Ching, C. C. Chan and M. S. W. Chan, “A novel zero-current soft-switching converter for switched reluctance motor drives,” in Proc. IEEE IECON'98, 1998, vol. 2, pp. 893-898.
C. Power Semiconductor Modules
[31] International Rectifier - iMotion motor control product information, www.irf.com/ product-info/imotion/ imotionacmotors.html
[32] Modular approach simplifies power-system design, powerelectronics.com/mag/ 605PET24.pdf
[33] A new version intelligent power module for high performance motor control, www.mitsubishichips.com/Global/conference/pdf/Paper2.pdf
[34] FCAS50SN60 smart power module for SRM, www.fairchildsemi.com/ds/ FC%2FFCAS50SN60.pdf
[35] Y. C. Kim, Y. H. Yoon, B. K. Lee, J. Hur and C. Y. Won, “A new cost effective SRM drive using commercial 6-switch IGBT modules,” in Proc. PESC, 2006, pp. 1-7.
[36] Y. C. Kim, Y. H. Yoon, B. K. Lee, H. S. Kim and C. Y. Won, “Control algorithm for 4-switch converter of 3-phase SRM,” in Proc. PESC, 2006, pp. 1-5.
[37] A. C. Oliveira, C. B. Jacobina, A. M. N. Lima and F. Salvadori, “Startup and fault tolerance of the SRM drive with three-phase bridge inverter,” in Proc. PESC, 2005, pp. 714-719.
[38] H. Goto, H. J. Guo, O. Ichinokura, “A novel drive method for switched reluctance using three-phase power modules,” in Proc. EPE-PEMC, 2006, pp. 1027-1031.
[39] Z. Grbo, S Vukosavic and E. Levi, “A novel power inverter for switched reluctance motor drives,” Elec. Enger., vol. 18, no. 3, pp. 453-465, 2005.
D. Modeling and Parameter Estimation of SRM
[40] N. J. Nagel and R. D. Lorenz, “Modeling of a saturated switched reluctance motor using an operating point analysis and the unsaturated torque equation,” IEEE Trans. Ind. Applicat., vol. 36, pp. 714-722, 2000.
[41] B. P. Loop and S. D. Sudhoff, “Switched reluctance machine model using inverse inductance characterization,” IEEE Trans. Ind. Applicat., vol. 39, no. 3, pp. 743-751, 2003.
[42] D. N. Essah and S. D. Sudhoff, “An improved analytical model for the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 349-356, 2003.
[43] V. Vujicic and S.N. Vukosavic, “A simple nonlinear model of the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 15, no. 4, pp. 395-400, 2000.
[44] S. Liu, Z. Zhao, S. Meng and J. Chai, “A nonlinear analytical model for switched reluctance motor,” in Proc. IEEE Region 10 Conf. on Computers, Communications, Control and Power Engineering, 2002, vol. 3, pp. 2034-2037.
[45] L. Xu and E. Ruckstadter, “Direct modeling of switched reluctance machine by coupled field-circuit method,” IEEE Trans. Energy Convers., vol. 10, no. 3, pp. 446-454, 1995.
[46] S. Cao, and K. J. Tseng, “Evaluation of neighboring phase coupling effects of switched reluctance motor with dynamic modeling approach,” in Proc. Power Electronics and Motion Control Conf., 2000, vol. 2, pp. 881-886.
[47] B. C. Mecrow, C. Weiner and A. C. Clothier, “The modeling of switched reluctance machines with magnetically coupled windings,” IEEE Trans. Ind. Applicat., vol. 37, no. 6, pp. 1675-1683, 2001.
[48] F. R. Salmasi and B. Fahimi, “Modeling switched-reluctance machines by decomposition of double magnetic saliencies,” IEEE Trans. Magnetics, vol. 40, no. 3, pp. 1562-1572, 2004.
[49] O. Ichinokura, T. Onda, M. Kimura, T. Watanabe, T. Yanada and H. J. Guo, “Analysis of dynamic characteristics of switched reluctance motor based on SPICE,” IEEE Trans. Magnetics, vol. 34, pp. 2147-2149, 1998.
[50] X. Wang and J. S. Lai, “Small-signal modeling and control for PWM control of switched reluctance motor drives,” in Proc. IEEE PESC, 2002, vol. 2, no. 1, pp. 546-551.
[51] S. A. Hussain and I. Husain, “Modeling, simulation and control of switched reluctance motor drives,” in Proc. IEEE IECON’03, 2003, vol. 3, pp. 2447-2452.
[52] K. N. Srinivas and R. Arumugam, “Dynamic characterization of switched reluctance motor by computer-aided design and electromagnetic transient simulation,” IEEE Trans. Magnetics, vol. 39, no. 3, pp.1806-1812, 2003.
[53] J. Mahdavi, G. Suresh, B. Fahimi and M. Ehsani, “Dynamic modeling of nonlinear SRM drive with Pspice,” in Proc. IAS '97, 1997, vol.1 pp.661-667.
[54] S. K. Sahoo, Q. Zheng, S. K. Panda and J. X. Xu, “Model-based torque estimator for switched reluctance motors,” in Proc. PEDS, 2003, vol. 2, pp. 959-963.
[55] A. D. Cheok and N. Ertugrul, “Use of fuzzy logic for modeling, estimation, and prediction in switched reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 46, no. 6, pp. 1207-1224, 1999.
[56] W. Lu, A. Keyhani and A. Fardoun, “Neural network-based modeling and parameter identification of switched reluctance motors,” IEEE Trans. Energy Convers., vol. 18, pp. 284-290, 2003.
E. Current Control
[57] H. K. Bae and R. Krishnan, “A study of current controllers and development of a novel current controller for high performance SRM drives,” in Conf. Rec. IEEE-IAS Annu. Meeting, 1996, vol. 1, pp. 68-75.
[58] F. Blaabjerg, P. C. Kjaer, P. O. Rasmussen and C. Cossar, “Improved digital current control methods in switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 563-572, 1999.
[59] G.. Gallegos-Lopez, K. Rajashekara, “ Peak PWM current control of switched reluctance and AC machines” in Proc. Ind. Applicat. Conf., 2002, vol. 2, pp. 1212-1218.
[60] R. B. Inderka, M. Menne, R. W. A. A. De Doncker, “Control of switched reluctance drives for electric vehicle applications” IEEE Trans. Ind. Electron., vol. 49, pp. 48-53, 2002.
[61] L. O. A. P. Henriques, P. J. C. Branco, L. G. B. Rolim and W. I. Suemitsu, “ Proposition of an off line learning current modulation for torque-ripple reduction in switched reluctance motors: design and experimental evaluation,” IEEE Trans. Ind. Electron., vol. 49, no. 3, pp. 665-676, 2002.
[62] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Applicat., vol. 39, no. 4, pp. 1118-1126, 2003.
[63] Z. Lin, D. S. Reay, B. W. Williams and X. He, “High performance current control for switched reluctance motors with on-line modeling,” in Proc. PESC’ 04, 2004, vol. 2, pp. 1246-1251.
[64] M. T. Alrifai, J. H. Chow and D. A. Torrey, “Practical application of backstepping nonlinear current control to a switched-reluctance motor,” in Proc. American Control, 2000, vol. 1, pp. 594-599.
[65] G. G. Lopez and K. Rajashekara, “Peak PWM current control of switched reluctance and AC machines,” in Proc. IEEE Ind. Applicat., 2002, vol. 2, pp. 1212-1218.
[66] M. R. Benhadria, K. Kendouci and B. Mazari, “Torque ripple minimization of switched reluctance motor using hysteresis current control,” in Proc. IEEE ISIE, 2006, pp. 2158-2162.
[67] S. K. Sahoo, S. K. Panda and J. X. Xu, “Direct torque controller for switched reluctance motor drive using sliding mode control,” in Proc. PEDS ‘05, 2005, vol. 2, pp. 1129-1134.
[68] R. Jeyabharath, P. Veena and M. Rajaram, “A novel DTC strategy of torque and flux control for switched reluctance motor drive,” in Proc. PEDS ’06, 2006, pp. 1-5.
F. Speed Control
[69] S. K. Panda and P. K. Dash, “Application of nonlinear control to switched reluctance motors: a feedback linearization approach,” IEE Proc. Elect. Power Applicat., 1996, vol. 143, no. 5, pp. 371-379.
[70] C. Visa, G. Abba and F. Leonard, “Speed control of a switched reluctance motor using non-linear methods,” in Proc. IEEE Conf. Syst., Man, Cybern., 2002, vol. 5, pp. 1-6.
[71] M. T. Alrifai, J. H. Chow and D. A. Torrey, “Backstepping nonlinear speed controller for switched-reluctance motors,” IEE Proc. Elect. Power Applicat., 2003, vol. 150, no. 2, pp. 193-200.
[72] G. John and A. R. Eastham, “Speed control of switched reluctance motor using sliding mode control strategy,” in Proc. Ind. Applicat. Conf., 1995, vol. 1, pp. 263-270.
[73] C. Bian, Y. Man, C. Song and S. Ren, “Variable structure control of switched reluctance motor and its application,” in Proc. WCICA, 2006, vol. 1, pp. 2490-2493.
[74] M. A. A. Morsy, M. S. A. Moteleb and H. T. Dorrah, “Development of robust fuzzy sliding mode control technique for nonlinear drive systems,” in Proc. Micro-NanoMechatronics and Human Science, 2006, pp. 1-6.
[75] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, 1997.
[76] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor,” IEE Proc. Electric Power Applicat., 2001, vol. 148, no. 4.
[77] C. Lucas, M. M. Shanehchi, P. Asadi and P. M. Rad, “A robust speed controller for switched reluctance motor with nonlinear QFT design approach,” in Proc. IEEE 2000 Ind. Applicat. Conf., 2000, vol. 3, pp. 1573-1577.
[78] G. John and A. R. Eastham “Robust speed control of a switched reluctance drive,” in Proc. IEEE CCECE, 1993. pp. 317-320.
[79] J. Y. Seo, H. R. Cha, H. Y. Yang, J. C. Seo, K. H. Kim, Y. C. Lim and D. H. Jang, “Speed control method for switched reluctance motor drive using self-tuning of switching angle,” in Proc. IEEE International Symposium on Industrial Electronics, 2001, vol. 2, pp. 811-815.
[80] S. K. Panda, X. M. Zhu and P. K. Dash, “Fuzzy gain scheduled PI speed controller for switched reluctance motor drive,” in Proc. IEEE IECON’97, 1997, vol. 3, pp. 989-994.
[81] B. Singh, V. K. Sharma and S. S. Murthy, “Performance analysis of adaptive fuzzy logic controller for switched reluctance motor drive system,” in Proc. IEEE IAS’98, 1998, vol. 1, pp. 571-579.
[82] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
G. Commutation Tuning
[83] D. A. Torrey and J. H. Lang, “Optimal-efficiency excitation of variable-reluctance motor drives,” IEE Proc. Elect. Power Applicat., 1991, vol. 138, no. 1, pp. 1-14.
[84] P. C. Kjaer, P. Nielsen, L. Andersen and F. Blaabjerg, “A new energy optimizing control strategy for switched reluctance motors,” IEEE Trans. Ind. Applicat., vol. 31, no. 5, pp. 1088-1095, 1995.
[85] J. P. Hong, B. S. Choi, S. J. Park, S. J. Kwon and M. H. Lee, “Switching angle control of the SRM for maximization of energy conversion ratio,” in Proc. IEEE ASME, 2003, vol. 2 , pp. 1151-1159.
[86] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
[87] M. Rodrigues, P. J. Costa Branco and W. Suemitsu, “Fuzzy logic torque ripple reduction by turn-off angle compensation for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 48, pp. 711-715, 2001.
[88] J. J. Gribble, P. C. Kjaer and T. J. E. Miller, “Optimal commutation in average torque control of switched reluctance motors,” IEE Proc. Elect. Power Applicat., 1999, vol. 146, no. 1, pp. 2-10.
[89] R. Orthmann and H.P. Schoner, “Turn-off angle control of switched reluctance motors for optimum torque output,” in Proc. Fifth European Conf. on Power Electron. and Applicat., 1993, vol. 6, pp. 20-25.
[90] A. V. Rajarathnam, B. Fahimi and M. Ehsani, “Neural network based self-tuning control of a switched reluctance motor drive to maximize torque per ampere,” in Proc. IEEE IAS’97, 1997, vol. 1, pp. 548-555.
[91] B. Fahimi, G. Suresh, J. P. Johnson, M. Ehsani, M. Arefeen and I. Panahi, “Self-tuning control of switched reluctance motors for optimized torque per ampere at all operating points,” in Proc. IEEE APEC’98, 1998, vol. 2, pp. 778-783.
[92] K.I. Hwu and C.M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
H. Battery Powered Motor Drives and Front-End Converters
[93] K. Asano, Y. Inaguma, H. Ohtani, E. Sato, M. Okamura and S. Sasaki, “High performance motor drive technologies for hybrid vehicles,” in Proc. PCC Conf., 2007, pp. 1584-1589.
[94] K. M. Rahman, B. Fahimi, G. Suresh, A. V. Rajarathnam and M. Ehsani, “Advantages of switched reluctance motor applications to EV and HEV: design and control issues,” IEEE Trans. Ind. Appl., vol. 36, no. 1, pp. 111-121, 2000.
[95] M. Krishnamurthy, C. S. Edrington, A. Emadi, P. Asadi, M. Ehsani and B. Fahimi, “Making the case for applications of switched reluctance motor technology in automotive products,” IEEE Trans. Power Electron., vol. 21, pp. 659-675, 2006.
[96] R. B. Inderka, M. Menne, and R. W. De Doncker, “Control of switched reluctance drives for electric vehicle applications,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 48-53, 2002.
[97] A. Fratta, P. Guglielmi, F. Villata and A. Vagati, “Efficiency and cost-effectiveness of AC drives for electric vehicles improved by a novel, boost DC-DC conversion structure,” in Proc. IEEE Power Electronics in Transportation Conf., 1998, pp. 11-19.
[98] F. Caricchi, F. Crescimbini, G. Noia and D. Pirolo, “Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles,” in Proc. IEEE APEC’94,1994, vol. 1, pp. 381-389.
[99] F. Caricchi, F. Crescimbini and A. D. Napoli, “20kW water-cooled prototype of a buck-boost bidirectional DC-DC converter topology for electrical vehicle motor drives,” in Proc. IEEE APEC’95, 1995, pp. 887-892.
[100] F. Caricchi, F. crescimbini, F. G. Capponi and L. Solero, “Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives,” in Proc. IEEE APEC’98, 1998, vol. 1, pp. 287-293.
[101] P. T. Tsai, Development of front-end converter and driving performance improvement for switched reluctance motor, Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2003.
[102] S. K. Sul and S. J. Lee, “An integral battery charger for four-wheel drive electric vehicle,” IEEE Trans. Ind. Appl., vol. 31, no. 5, pp. 1096-1099, 1995.
[103] K. T. Weng and C. Pollock, “Low-cost battery-powered switched reluctance drives with integral battery-charging capability,” IEEE Trans. Ind. Appl., vol. 36, no. 6, pp. 1676-1681, 2000.
I. Switch-Mode Rectifier
[104] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D.P. Kothari, “A review of single-phase improved power quality AC–DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003.
[105] M. Hengchun, C. Y. Lee, D. Boroyevich and S. Hiti, “Review of high-performance three-phase power-factor correction circuits,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 437-446, 1997.
[106] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[107] B. Fuld, S. Kern and R. Ridley, “A combined buck and boost power-factor-controller for three-phase input,” in Proc. Power Electron. and Applicat., 1993, vol. 7, pp. 144-148.
[108] J. I. Itoh and I. Ashida, “A novel three-phase PFC rectifier using a harmonic current injection method,” IEEE Trans. Power Electron., vol. 23, no. 2, pp. 715-722, 2008.
[109] A. R. Prasad, P. D. Ziogas and S. Manias, “An active power factor correction technique for three-phase diode rectifiers,” IEEE Trans. Power Electron., vol. 6, no. 1, pp. 83-92, 1991.
[110] D. S. L. Simonetti, J. Sebastian and J. Uceda, “Single-switch three-phase power factor preregulator under variable switching frequency and discontinuous input current,” in Proc. PESC '93, 1993, pp. 657-662.
[111] D. O. Neacsu, Y. Ziwen and V. Rajagopalan, “Optimal PWM control for single-switch three-phase AC-DC boost converter,” in Proc. PESC '96, 1996, vol. 1, pp. 727-732.
[112] R. Zhang and F. C. Lee, “Optimum PWM pattern for a three-phase boost DCM PFC rectifier,” in Proc. APEC '97, 1997, vol. 2, pp. 895-901.
[113] Y. Jang and M. M. Jovanovic, “A comparative study of single-switch three-phase high power-factor rectifiers,” IEEE Trans. Ind. Applicat., vol. 34, no. 6, pp. 1327-1334, 1998.
J. Sensorless control of SRM
[114] B. Fahimi, G. Suresh and M. Ehsani, “Review of sensorless control methods in switched reluctance motor drives,” in Proc. Ind. Applicat. Conf., 2000, vol. 3, pp. 1850-1857.
[115] G. Gallegos-Lopez, P. C. Kjaer and T. J. E. Miller, “High-grade position estimation for SRM drives using flux linkage current correction model,” IEEE Trans. Ind. Appl., vol. 35, no. 4, pp. 859-869, 1999.
[116] B. Fahimi, A. Emadi and R.B. Sepe Jr., “Four-quadrant position sensorless control in SRM drives over the entire speed range,” IEEE Trans. Power Electron., vol. 20, no. 1, pp. 154-163, 2005.
[117] G. Hongwei, F. R. Salmasi and M. Ehsani, “Inductance model-based sensorless control of the switched reluctance motor drive at low speed,” IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1568–1573, 2004.
[118] M. Ehsani, I. Husain, S. Mahajan and K. R. Ramani, “New modulation encoding techniques for indirect rotor position sensing in switched reluctance motors,” IEEE Trans. Ind. Appl., vol. 30, no. 1, pp. 85-91, 1994.
[119] S. A. Hossain, I. Husain, H. Klode, B. Lequesne, A. M. Omekanda and S. Gopalakrishnan, “Four-quadrant and zero-speed sensorless control of a switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 39, no. 5, pp. 1343-1349, 2003.
[120] A. Khalil, I. Husain, S. A. Hossain, S. Gopalakrishnan, A. M. Omekanda, B. Lequesne and H. Klode, “A hybrid sensorless SRM drive with eight- and six-switch converter topologies,” IEEE Trans. Ind. Appl., vol. 41, no. 6, pp. 1647-1655, 2005.
K. Others
[121] J. Y. Chai, R. J. Chen and C. M. Liaw, “On a SRM with three-phase PFC front-end and its control,” R.O.C. Symposium on Electrical Power Engineering, pp. D06.3-1-D06.3-5, 2007.
[122] T. M. Lin, Design and implement of a DSP-based switched reluctance motor drive, Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2000.