研究生: |
陳家薪 Chen, Chia-Hsin |
---|---|
論文名稱: |
軸子暴脹模型的影響作用量 Influence action in axion inflation model |
指導教授: |
牟中瑜
Mou, Chung-Yu 曹慶堂 Cho, Hing-Tong |
口試委員: |
陳江梅
劉國欽 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 軸子暴漲模型 、暖暴漲模型 、自然暴漲模型 、non-Gaussianity |
外文關鍵詞: | Axion inflation model, warm inflation model, natural inflation model, non-Gaussianity |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文中,我將會簡介暴漲模型的想法,以及其中一種模型“自然暴
漲模型”。自然暴漲模型有其缺點,也就是裡面的f scale需遠大於Planck scale。為了解決此問題,進而引進另一種暴漲模型“軸子暴漲模型”。
軸子暴漲理論可以解決f scale太大的問題。軸子可以自然地與規範波色子
起交互作用,在這篇論文中,我們將考慮最簡單的情況,也就是與光子交互作用。在暴漲期間,我們會把光子當作隨機場,並且來影響暴漲子。
最後我們會發現,在暴漲期間,右手偏振光的效應會遠遠大於左手偏振
光。而我們在軸子暴漲模型中,自然地得到2-point correlator,以及3-point correlator。3-point correlator則會與non-Gaussianity效應有直接的關聯。也就是說軸子暴漲場理論可以自然地給出non-Gaussianity效應。
In this thesis, I will introduce the idea of inflationary Universe, and will give the
“Natural inflation model” as an example. This model has some disadvantages. The best known one is that the f scale is much larger than the Planck scale. But the “axion inflation model” can heal this problem. Axion can naturally interact with the gauge boson . In our case , we choose the most simple situation in which the gauge boson is the photon.We then consider the Electromagnetic field as a stochastic field, which affects inflaton. In our calculation, we discover that light with the right hand polarization can have more effect than the one with the left hand polarization during the inflation epoch. And we can naturally get 2-point correlators and 3-point correlators in the axion inflation model. 3-point correlators are related to non-Gaussianity. Therefore, axion inflation model can naturally supply non-Gaussianity effect.
[1] D. S Gorbunov and V. A Rubakov, “Introduction to the Theory of the Early
Universe:Hot Big Bang Theory” ,World Scientific Co.Pte.Ltd,2011
[2] S. Tsujikawa, “Introductory review of cosmic inflation” , arXiv:hep-ph/0304257,
2003
[3] A. H. Guth, “Inflationary universe: A possible solution to the horizon and flatness
problems” , Phys. Rev. D 23, 347,1981
[4] Patrick Peter and Jean-Philppe Uzan, “Primordial cosmology” ,Oxford university
Press ,2009,New York
[5] M. P. Hobson , G. P. Efstathiou , A. N. Lasenby and Kindle Edition, “General
relativity: an introduction for physicists” , Cambridge university Press ,2009,New Yor
[6] F. Adams and J. R. Bond and K. Freese and J. Frieman and Angela Olinto, “Natural
Inflation: Particle Physics Models, Power Law Spectra for Large Scale Structure, and Constraints from COBE” , Phys.Rev.D47:426-455,1993
[7] A. Berera1, I. G Moss and R. O Ramos, “Warm inflation and its microphysical” ,
Rept.Prog.Phys.72:026901,2009
[8] A. Berera and I. G. Moss and R. O. Ramos, “Warm Inflation and its Microphysical
Basis” , Rept.Prog.Phys.72:026901,2009
[9] Ferreira, Ricardo Z. ; Notari, Alessio, “Thermalized axion inflation” , Phys. Rev. D
97, 063528,2018
[10] E, Pajer and M, Peloso, “A review of Axion Inflation in the era of Planck” ,
arXiv:1305.3557,2013
[11] N, Barnaby, R. Namba, M. Peloso, “Phenomenology of a Pseudo-Scalar Inflaton:
Naturally Large Nongaussianity” , arXiv:1102.4333, 2011
[12] I. G Moss and C. Xiong, “Non-gaussianity in fluctuations from warm inflation” ,
JCAP 0704:007,2007
[13] J. Maldacena, “Non-Gaussian features of primordial fluctuations in single field
inflationary models” , JHEP 0305 (2003) 013,2003
[14] V. Ganesan and P. Chingangbam and K. P. Yogendran and C. Park, “Primordial
non-Gaussian signatures in CMB polarization” , arXiv:1411.5256,2014
[15] D. Baumann, “TASI Lectures on Inflation” , arXiv:0907.5424,2009
[16] M. M. Anber and L. Sorbo, “Non-Gaussianities and chiral gravitational waves in
natural steep inflation” , Phys Rev D 85, 123537,2012
[17] D. S. Gorbunov, V.A.Rubakov, “introduction to the theory of the early universe” ,
World Scientific Pulishing Co. Pte.Ltd,2011
[18] N. Bartolo and E. Komatsu and S. Matarrese and A. Riotto, “Non-Gaussianity
from Inflation: Theory and Observations” , Phys.Rept. 402 (2004) 103-266,2004
[19] K. Freese, J. A. Frieman and A. V. Olint, “Natural Inflation with Pseudo Nambu-
Goldstone Bosons” , Phys.Rev.Lett. 65 (1990) 3233-3236,1990
[20] M. M Anber and L. Sorbo, “Naturally inflating on steep potentials through
electromagnetic dissipation” , Phys. Rev. D 81, 043534,2010
[21] M. P. Hobson , G. P. Efstathiou , A. N. Lasenby and Kindle Edition, “General
relativity: an introduction for physicists” , Cambridge university Press ,2009,New York
[22] A. R. Liddle and D. H. Lyth, “Cosmological inflation and large-scale structure” ,
Cambridge university Press,2000
[23] Michael Kachelriess, “Quantum Fields:From the Hubble to the Planck Scale” ,
Oxford university,2018,New York
[24] R. D. Jordan, “Effective field equations for expectation values” , Phys. Rev. D 33,
444,1986
[25] M. Gleiser and R. O. Ramos, “Microphysical Approach to Nonequilibrium
Dynamics of Quantum Fields” , Phys.Rev. D50 (1994) 2441-2455,1994
[26] P. Sikivie, “Axion Cosmology” , Lect.Notes Phys.741:19-50,2008
[27] A. Dology and K, Freese, “Calculation of particle production by Nambu-
Goldstone bosons with application to inflation reheating and baryogenesis” , Phys. Rev. D 51, 2693,1995
[28] M. Kamionkowski and J.March-Russell, “Planck-Scale Physics and the Peccei-
Quinn Mechanism” , Phys.Lett. B282 (1992) 137-141,1992
[29] J. E. Kim and G. Carosi, “Axions and the Strong CP Problem” , Rev.Mod.Phys.82:
557-602,2010
[30] G. Gabadadze and M. Shifman, “QCD Vacuum and Axions: What's Happening?” ,
Int.J.Mod.Phys. A17 (2002) 3689-3728,2002
[31] J. E. Kim. “A review on axions and the strong CP problem” , AIP Conf.Proc.
1200:83-92,2010
[32] R. D. Peccei, “The Strong CP Problem and Axions” , Lect.Notes Phys.741:3-
17,2008
[33] O. Wantz and E. P. S. Shellard, “Axion Cosmology Revisited” , Phys.Rev.D
82:123508,2010
[34] R. D. Peccei and H. R. Quinn, “CP Conservation in the Presence of
Pseudoparticles” , Phys. Rev. Lett. 38, 1440,1977
[35] L. Sorbo, ” Parity violation in the Cosmic Microwave Background from a
pseudoscalar inflation” , JCAP 1106 (2011) 003,2011