研究生: |
廖聖傑 Liao, Sheng-Chieh |
---|---|
論文名稱: |
磊晶奈米結構之磁性質 Magnetism in epitaxial nanostructures |
指導教授: |
賴志煌
Lai, Chih-Huang |
口試委員: |
張慶瑞
Chang, Ching-Ray 金重勳 Chin, Tsung-Shune 何清 He, Qing 朱英豪 Chu, Ying-Hao |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 143 |
中文關鍵詞: | 磊晶 、奈米結構 、脈衝雷射濺鍍 、磁異向性 、交換耦合 、介面 、複雜氧化物 |
外文關鍵詞: | epitaxy, nanostructures, pulsed laser deposition, magnetic anisotropy, exchange coupling, interface, complex oxide |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米結構的特色,在於它能以多樣的方式組合兩種以上的材料。同時,它的高介面¬—體積比提升了介面對於整體性質的影響力。而在磊晶奈米結構中,磊晶的引入使得介面與晶體的方向能夠被控制,使得介面現象能夠進一步的被探明。在本論文中,作者探討了在不同種類的磊晶奈米結構裡的磁性,以及這些磁性質與結構的關聯。其中作者特別著重於介面的磁耦合與它如何影響整體的磁異向性。
此論文包含三個議題:一、在多鐵性鐵酸鉍的109度疇壁中,磁矩的異向性為何?二、在核—殼(core-shell)奈米結構中,其異向性與介面上的交換耦合現象為何?此二者如何被結構幾何所控制?三、如何成長鐵磁金屬—氧化物之垂直柱狀磊晶奈米結構,以及控制其磁異向性?而本研究整合結構與磁性量測、以及巨磁學與微磁學分析,得到下面結論:一、應用鐵磁—反鐵磁交換耦合,推測在鉍酸鐵的109度疇壁中,平均的反鐵磁磁矩平行於疇壁,並有著垂直膜面的向量分量。而其未抵銷且固定之磁矩則並沒有顯著之異向性。二、應用微磁學分析與改變結構幾何,在磊晶核—殼奈米結構中,推測出¬結構幾何不僅決定整體的磁異向性,亦影響著介面異向性常數與交換偏壓。三、利用氧缺陷以及元素對於氧化能力的差異,可以用物理方式鍍製金屬鐵磁—氧化物柱狀磊晶奈米結構。而溫度與基板能控制晶粒的方向與尺寸,因此得以控制磁異向性並得到垂直膜面的磁易軸。從這些結論中,得以看出磊晶的引入能使得人們得以進一步探究與控制奈米結構中的介面現象以及其異向性。而在研究過程中提出的方法,亦有助於後續磁性奈米結構的研究。
Nanostructures features variety of structures composed by two or more materials. High interface-to volume ratio raises the impact of interface to the properties of the nanostructures. The introduction of epitaxy to the nanostructures confines the direction of interfaces and crystallographic direction, bringing an insight to the interface phenomena. In this thesis, the author discusses the magnetism in different types of epitaxial nanostructures and their correlation to the structures. Interfacial coupling and its contribution to the magnetic anisotropy are especially addressed. Three problems of magnetism of epitaxial nanostructures are involved in this thesis: the anisotropy of magnetic moment in 109° domain walls (DWs) of multiferroic bismuth ferrite (BiFeO3), magnetic anisotropy and exchange coupling in epitaxial core-shell nanostructures and how they are affected by structure geometry, growth and control of magnetic anisotropy in the epitaxial metal-oxide nanostructures. The author applies comprehensive structural and magnetic analyses as well as the macro-spin/ micromagnetic modeling and deduces the following conclusions: 1. The average direction antiferromagnetic spin in 109°DWs is parallel to the DWs with a certain out-of-plane component. No obvious anisotropy is observed of pinned uncompensated spins. 2. With micromagnetic simulation and variation of structure geometry, the author deduce that the structure geometry not only determine the magnetic anisotropy but also effect the exchange coupling in epitaxial core-shell nanostructures. 3. The metal-oxide columnar nanostructures could be fabricated by physical deposition via oxygen vacancy and difference of the oxygen affinity. Growth temperature and substrate control the dimension and orientation of nano-columns and thus the magnetic anisotropy. These results confirm that the introduction of epitaxy allow further investigation and control of interface phenomena and their anisotropy in nanostructures. The methods proposed in this thesis also helps researches of magnetic nanostructures.
1. Y. Wang, J. Hu, Y. Lin, C.-W. Nan, NPG Asia Mater. 2010, 2, 61.
2. S. Okamoto, N. Kikuchi, O. Kitakami, T. Miyazaki, Y. Shimada, K. Fukamichi, Phys. Rev. B, 2002, 66, 024413.
3. Y. Zhang, T.-R. Chang, B. Zhou, Y.-T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H.-T. Jeng, S.-K. Mo, Z. Hussain, A. Bansil, Z.-X. Shen, Nat. Nanotech. 2014, 9, 111-115.
4. T. C. Asmara, A. Annadi, I. Santoso, P. K. Gogoi, A. Kotlov, H. M. Omer, M. Motapothula, M. B. H. Breese, M. Rübhausen, T. Venkatesan, Ariando, A. Rusydi, Nat. Commun. 2014, 5, 3663.
5. H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, Y. Tokura, Nat. Mater. 2012, 11, 103
6. N. Reyren, S. Thiel, A. D. Caviglia, L. Fitting Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A.-S. Rüetschi, D. Jaccard, M. Gabay, D. A. Muller, J.-M. Triscone, J. Mannhart, Science, 2007, 317, 1196-1199
7. Y.-H. Chu, L. W. Martin, M. B. Holcomb, R. Ramesh, Mater. Today, 2007, 10, 16.
8. J. T. Heron, M. Trassin, K. Ashraf, M. Gajek, Q. He, S. Y. Yang, D. E. Nikonov, Y.-H. Chu, S. Salahuddin, R. Ramesh, Phys. Rev. Lett. 2011, 107, 217202.
9. N. A. Spaldin, R. Ramesh, MRS bulletin 2008, 33, 1047
10. H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Science 2004, 303, 661.
11. M. Liu, O. Obi, J. Lou, Y. Chen, Z. Cai, S. Stoute, M. Espanol, M. Lew, X. Situ, K. S. Ziemer, V. G. Harris, N. X. Sun, Adv. Func. Mater. 2009, 19, 1826-1831.
12. F. Zavaliche, T. Zhao, H. Zheng, F. Straub, M. P. Cruz, P.-L. Yang, D. Hao, R. Ramesh, Nano Lett. 2008, 7, 1586.
13. A. Aird, E. K. H. Salje, J. Phys. Conden. Matter, 1998, 10, L377-L380.
14. J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y.-H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, R. Ramesh, Nat. Mater. 2009, 8, 229.
15. R. K. Vasudevan, A. N. Morozovska, E. A. Eliseev, J. Britson, J.-C. Yang, Y.-H. Chu, P. Maksymovych, L. Q. Chen, V. Nagarajan, S. V. Kalinin, Nano Lett. 2012, 12, 5524.
16. J. Seidel, J. Phys. Chem. Lett. 2012, 3, 2905
17. B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials, pp 18 – 21, 197-333, 2nd edition, IEEE Press, New Jersey (US), 2009.
18. J. Lindner and M. Farle, Magnetic anisotropy of Heterostructures, Springer Tracks in Modern Physics, 227, 45-96 (2007)
19. H. Kronmüller, General Micromagnetic Theory, Handbook of Magnetism and Advanced magnetic materials volume 2: micromagnetism, Editor: H. Kronmüller and S. Parkin, John Wiley & Sons, 2007.
20. Jürgen Klein, Epitaktische Heterostrukturen aus dotierten Manganaten, PhD Thesis, University of Cologne (2001)
21. P. K. Larsen and P. J. Dobson, Reflection High-Energy Electron Diffraction and Reflection Electron Imaging of Surface, NATO ASI Series
22. P. F. Fewster, Crit. Rev. Solid State Mater. Sci. 1997, 22, 69.
23. Wikipedia: The Free Encyclopedia. Wikimedia Foundation Inc. Updated 2 January 2009, 20:18 UTC. Encyclopedia on-line. Available from https://commons.wikimedia.org/wiki/File:Scheme_TEM_en.svg. Internet. Retrieved 8 August 2015.
24. H. Foil, Defect in crystals, Available from
http://www.tf.uni-kiel.de/matwis/amat/def_en/ kap_6/illustr/tem.gif
25. C. K. Roy, Auger Electron Spectroscopy (AES), wiki.utep.edu. Updated 17 October 2010. Available from https://wiki.utep.edu/pages/viewpage.action?pageId=39194437.
26. Wikipedia: The Free Encyclopedia. Wikimedia Foundation Inc. Updated 2 January 2009, 20:18 UTC. Encyclopedia on-line. Available from
https://upload.wikimedia.org/wikipedia/commons/f/f2/System2.gif. Internet. Retrieved 8 August 2015.
27. J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of photoelectron spectroscopy, Editor: J. Chastain and R. C. King, Jr., Physical Electronics, 1995.
28. Wikipedia: The Free Encyclopedia. Wikimedia Foundation Inc. Updated 2 January 2009, 20:18 UTC. Encyclopedia on-line. Available from Wikipedia: The Free Encyclopedia. Wikimedia Foundation Inc. Updated 2 January 2009, 20:18 UTC. Encyclopedia on-line. Available from
https://upload.wikimedia.org/wikipedia/commons/f/f7/AES_Setup2.JPG. Internet. Retrieved 8 August 2015.
29. C. R. Nave, HyperPhysics, Department of Physics and Astronomy, Georgia State University, Available from
http://hyperphysics.phy-astr.gsu.edu/hbase/solids/squid.html
30. Walther-Meißner-Institut. available from
http://www.wmi.badw.de/methods/images/squid_pickup.jpg
31. L. W. Martin, S. P Crane, Y.-H. Chu, M. B. Holcomb, M. Gajek, M. Huijben, C.-H. Yang, N. Balke, R. Ramesh, J. Phys.: Condens. Matter 2008, 20, 434220.
32. W. Eerenstein, N. D. Mathur, J. F. Scott, Nature 2006 442, 759.
33. B. B. Van Aken, T. T. M. Palstra, A. Filippetti, N. A. Spaldin, Nat. Mater. 2004, 3, 164.
34. C. A. F. Vaz, J. Hoffman, C. H. Ahn, R. Ramesh, Adv. Mater. 2010, 22, 2900.
35. X. He, Y. Wang, N. Wu, A. N. Caruso, E. Vescovo, K. D. Belashchenko, P. A. Dowben, C. Binek, Nat. Mater. 2010, 9, 579.
36. A. Lubk, S. Gemming, and N. A. Spaldin, Phys. Rev. B 2009, 80, 104110.
37. C. Ederer, N. A. Spaldin, Phys. Rev. B 2005, 71, 060401(R).
38. T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom, R. Ramesh, Nat. Mater, 2006, 5, 823.
39. J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y.-H. Chu, A. Rother, M. E. Hawkridge, P. Maksymovych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, R. Ramesh, Nat. Mater. 2009, 8, 229.
40. Bo-Chao Huang, Ya-Ping Chiu, Po-Cheng Huang, Wen-Ching Wang, Vu Thanh Tra, Jan-Chi Yang, Qing He, Jiunn-Yuan Lin, Chia-Seng Chang, Ying-Hao Chu, Adv. Mater. 2011, 23, 1530.
41. Q. He, C.-H. Yeh, J.-C. Yang, G. Singh-Bhalla, C.-W. Liang, P.-W. Chiu, G. Catalan, L. W. Martin, Y.-H. Chu, J. F. Scott, R. Ramesh, Phys. Rev. Lett. 2012, 108, 067203
42. J. Seidel, J. Appl. Chem. Lett. 2012, 2, 2905.
43. Y.-H. Chu, L. W. Martin, M. B. Holcomb, R. Ramesh, Mater. Today, 2007, 10, 16.
44. Y.-H. Chu, L. W. Martin, M. B. Holcomb, M. Gajek, S.-J. Han, Q. He, N. Balke, C.-H. Yang, D. Lee, W. Hu, Q. Zhan, P.-L.Yang, A. Fraile-Rodriguez, A. Scholl, S. X. Wang, R. Ramesh, Nat. Mater. 2008, 7, 478.
45. S. M. Wu, S. A. Cybart, P. Yu, M. D. Rossell, J. X. Zhang, R. Ramesh, R. C. Dynes, Nat. Mater. 2010, 9, 756.
46. J. T. Heron, M. Trassin, K. Ashraf, M. Gajek, Q. He, S. Y. Yang, D. E. Nikonov, Y.-H. Chu, S. Salahuddin, R. Ramesh, Phys. Rev. Lett. 2011, 107, 217202.
47. C.-Y. Kuo, Z. Hu, J. C. Yang, S.-C. Liao, Y. L. Huang, R. K. Vasudevan, H. J. Liu, S. V. Kalinin, C.-H. Lai, T. W. Pi, S. Agrestini1, K. Chen, P. Ohresser, A. Tanaka, L. H. Tjeng, Y. H. Chu, submitted to Nature Communication.
48. T. C. Schulthess and W. H. Butler, Phys. Rev. Lett. 1998, 81, 4516.
49. M. Trassin, J. D. Clarkson, S. R. Bowden, J. Liu, J. T. Heron, P. J. Paull, E. Arenholz, D. T. Pierce, J. Unguris, Phys. Rev. B 2013, 87, 134426
50. D. Y. Qiu, K. Ashraf, S. Salahuddin, Appl. Phys. Lett. 2013, 102, 112902.
51. L. W. Martin, Y.-H. Chu, M. B. Holcomb, M. Hujiben, P. Yu, S.-J. Han, D. Lee, S. X. Wang, R. Ramesh, Nano Lett. 2008, 8, 2050.
52. Y.-H. Chu, Q. He, C.-H. Yang, P. Yu, L. W. Martin, P. Shafer, R. Ramesh, Nano Lett. 2009, 9, 1726-1730
53. J. Olamit, Z.-P. Li, I. K. Schuller, K. Liu, Phys. Rev. B 2007, 73, 024413.
54. H. Xi and R. M. White, J. Appl. Phys. 1999, 86, 5169.
55. R. D. McMicheal, M. D. Stales, P. J. Chen, and W. F. Egelhoff, Phys. Rev. B 1998, 58, 8605.
56. L. Wee, R. L. Stamps, Z. Celinski, L. Malkinski, and D. Skrzypek, J. Magn. Mater. 2002, 240, 270.
57. Y. Lu, A. Nathan, Appl. Phys. Lett. 1997, 70, 526.
58. F. Radu, H. Zebel, Springer Tr. Mod. Phys. 2007, 227, 97-184.
59. D. Lebeugle, A. Mougin, M. Viret, D. Colson, J. Allibe, H. Béa, E. Jacquet, C. Deranlot, M. Bibes, A. Barthélémy, Phys. Rev. B, 2010, 81, 134411.
60. L. You et. al., Adv. Mater. 2010, 22, 4964-4968.
61. S. Maat, K. Takano, S. S. P. Parkin, E. E. Fullerton, Phys. Rev. Lett. 87, 087202 (2001)
62. J. Sort, F. Garcia, B. Rodmacq, S. Auffret, B. Dieny, J. Magn. Mater. 2004, 272, 355-356
63. C. K. Safeer et al., Appl. Phys. Lett. 2012, 100, 072402
64. K. Binder, Rev. Mod. Phys. 1986, 58, 801–976.
65. D. Sando et. al. Nat. Mater. 2013, 12, 641.
66. L. M. Liz-Marzán, P. Mulvaney, J. Phys. Chem. B 2003, 107, 7312.
67. S. Kim, B. Fisher, H. -J. Eisler, M. Bawendi, J. Am. Chem. Soc. 2003, 125, 11466.
68. E. Janik, A. Wachnicka, E. Guziewicz, M. Godlewski, S. Kret, W. Zaleszczyk, E. Dynowska, A. Presz, G. Karczewski and T. Wojtowicz, Nanotechnology 2010, 21, 015302.
69. C. Cagli, F. Nardi, B. Harteneck, Z. Tan, Y. Zhang, D. lelmini, Small 2011, 7, 2899.
70. R. Hao, R. Xing, Z. Xu, Y. Hou, S. Gao, S. Sun, Adv. Mater. 2010, 22, 2729.
71. X. -J. Hao, T. Tu, G. Cao, C. Zhou, H. -O. Li, G.-C. Guo, W. Y. Fung, Z. Ji, G.-P. Guo, W. Lu, Nano Lett. 2010, 10, 2956.
72. A. N. Kulak, P. Iddon, Y. Li, S. P. Armes, H. Cölfen, O. Paris, R. M. Wilson, F. C. Meldrum, J. Am. Chem. Soc. 2007, 129, 3729.
73. G. Salazar-Alvarez, J. Sort, S. Suriñach, M. D. Baró, J. Nogués, J. Am. Chem. Soc. 2007, 129, 9102.
74. D. W. Kavich, J. H. Dickerson, S. V. Mahajan, H. A. Hasan, and J. -H. Park, Phys. Rev. B 2008, 78, 174414.
75. J.-C. Yang, Q. He, Y.-M. Zhu, J.-C. Lin, H.-J. Liu, Y.-H. Hsieh, P.-C. Wu, Y.-L. Chen, S.-F. Lee, Y.-Y. Chin, H.-J. Lin, C.-T. Chen, Q. Zhan, E. Arenholz, Y.-H. Chu, Nano Lett. 2014, 14, 6073.
76. Y. Ijiri, T. C. Schulthess, J. A. Borchers, P. J. van der Zaag, R. W. Erwin, Phys. Rev. Lett. 2007, 99, 147201.
77. E. Lima, E. L. Winkler, D. Tobia, H. E. Troiani, R. D. Zysler, E. Agostinelli, D. Fiorani, Chem. Mater. 2012, 24, 512.
78. P. J. van der Zaag, Y. Ijiri, J. A. Borchers, L. F. Feiner, R. M. Wolf, J. M. Gaines, R. W. Erwin, M. A. Verheijen, Phys. Rev. Lett. 2000, 84, 6102.
79. M. N. R. Ashfold, F. Claeyssens, G. M. Fuge, S. J. Henley, Chem. Soc. Rev. 2004, 33, 23-31.
80. F. D. Ferguson, G. Arikan, D. S. Dale, A. R. Woll, J. D. Brock, Phys. Rev. Lett. 2009, 103, 256103
81. K. A. Bogle, J. Cheung, Y.-L. Chen, S.-C. Liao, C.-H. Lai, Y.-H. Chu, J. M. Gregg, S. B. Ogale, N. Valanoor, Adv. Func. Mater. 2012, 22, 5224.
82. R. Kannan, M. S. Seehra, Phys. Rev. B 1987, 35, 6847.
83. A. Goldman, Modern Ferrite Technology; Van Nostrand-Reinhold: NY, USA 1990.
84. F. W. Lytle, J, Appl. Phys. 1964, 35, 2212.
85. D. Risold, B. Hallstedt, L. J. Gauckler, J. Phase Equil. 1995, 16, 223.
86. J. Cheung, K. Bogle, X. Cheng, J. Sullaphen, C.-Y. Kuo, Y.-J. Chen, H.-J. Lin, C.-T. Chen, J.-C. Yang, Y.-H. Chu, N. Valanoor, J. Appl. Phys. 2012, 112, 104321.
87. K. A. Bogle, V. Anbusathaiah, M. Arredondo, J.-Y. Lin, Y.-H. Chu, C. O’Neill, J. M. Gregg, M. R. Castell, V. Nagarajan, ACS Nano 2010, 4, 5139-5146.
88. B. J. Touzelin, Less-common Mat. 1981, 77, 11.
89. P. F. Fewster, Crit. Rev. Solid. State 1997, 22, 69
90. J.A. Moyer, C. A. F. Vaz, D. A. Arena, D. Kumah, E. Negusse, V. E. Henrich, Phys. Rev. B 2011, 84, 054447.
91. I. C. Nlebedim, J. E. Snyder, A. J. Moses, D. C. Jiles, IEEE Trans. Magn. 2012, 48, 3084.
92. M. J. Donahue, D. G. Porter, OOMMF user's guide, version 1.0 (Interagency Report NISTIR 6376, National Institute of Standards and Technology, Gaithersburg, MD 1999)
93. B.-Y. Wang, J.-Y. Hong, K.-H. Ou Wang, Y.-L. Chan, D.-H. Wei, H.-J. Lin, M.-T. Lin, Phys. Rev. Lett. 2013, 110, 117203.
94. J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J. S. Muñoz, M. D. Baró, Phys. Rep. 2005, 422, 65.
95. P. J. van der Zaag, A.R. Ball, L. F. Feiner, R. M. Wolf, P. A. A. van der Heijden, J. Appl. Phys. 1996, 79, 5103-5105.
96. M. T. Johnson, P. J. H. Bloemen, F. J. A. den Broeder, J. J. de Vries, Rep. Prog. Phys. 1998, 59, 1409.
97. A. V. Ramos, S. Matzen, J. -B. Moussy, F. Ott, M. Viret, Phys. Rev. B 2009, 79, 014410.
98. V. Moshiyaga, B. Damaschke, O. Shapoval ,A. Belenchuk , J. Faupel, O. I. Lebedev, J. Verbeeck, G.van Tendeloo, M. Müchsch, V. Tsurkan, R. Tidecks, K. Samwer, Nat. Mater. 2003, 2, 247.
99. H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Science, 2004, 303, 661.
100. Y.-H. Hsieh, H.-H. Kuo, S.-C. Liao, H.-J. Liu, Y.-J. Chen, H.-J. Lin, C.-T. Chen, C.-H. Lai, Q. Zhan, Y.-L. Chueh, Y.-H. Chu, Nanoscale, 2013, 5, 6219.
101. H. Zheng, Q. Zhan, F. Zavaliche, M. Sherburne, F. Straub, M. P. Cruz, L.-Q. Chen, U. Dahmen, R. Ramesh, Nano Lett. 2006, 6, 1401.
102. H. Zheng, F. Staub, Q. Zhan, P.-L. Yang, W.-K. Hsieh, F. Zavaliche, Y.-H. Chu, U. Dahmen, R. Ramesh. Adv. Mater. 2006, 18, 2747.
103. F. Zavaliche, T. Zhao, H. Zheng, F. Straub, M. P. Cruz, P.-L. Yang, D. Hao, R. Ramesh, Nano Lett. 2008, 7, 1586.
104. Y.-H. Hsieh, E. Strelcov, J.-M. Liou, C.-Y. Shen, Y.-C. Chen, S. V. Kalinin, Y.-H. Chu, ACS Nano, 2013, 7, 8627.
105. B. J. Lin, S. H. Bae, S. Y. Lee, S. Im, Mater. Sci. Eng. B. 2000, 71, 301
106. M. N. R. Ashfold, F. Claeyssens, G. M. Fuge, S. J. Henley, Chem. Soc. Rev. 2004, 33, 23-31.
107. F. Vidal, Y. Zheng, J. Milano, D. Demaille, P. Schio, E. Fonda, B. Vodungbo, Appl. Phys. Lett. 2009, 95, 152510.
108. CRC Handbook of Chemistry and Physics, 96th edition, William M. Haynes, CRC press.
109. G. Y. Guo, D. J. Roberts, G. A. Gehring, Phys. Rev. B 1999, 59, 14466-14472.