簡易檢索 / 詳目顯示

研究生: 劉彥廷
Liu, Yen Ting
論文名稱: 電池交換網路的模擬
Battery Switching Networks Simulation
指導教授: 張正尚
Chang, Cheng Shang
口試委員: 林華君
Lin, Hwa Chun
李端興
Lee, Duan Shin
黃之浩
Huang, Chih Hao
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 23
中文關鍵詞: 電池動態配置
外文關鍵詞: battery, dynamic configuration
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 能源是地球上珍貴的資產,可分為非再生及再生能源兩種,再生能源雖然取之不盡、用之不竭,但轉換效率非常之差,根本不足以負荷人們的使用,而非再生能源像是石油、天然氣、煤等化石燃料目前還是我們用來發電的大宗,這些化石燃料要歷經數以百萬年的自然過程才能產生,且不能再補充,若不能適當的使用,能源枯竭的一天將會提早到來,大家開始注意到能源管理的議題,因此如何有效率地去管理與規劃大規模的電池系統受到各方很多的關注。

    本篇論文主要是[22]的延伸,在[22]中有提到一些大規模的電池系統大致上會有五種問題需要考量:可靠度問題、效率問題、持續性問題、彈性及複雜度,他們設計與分析出來的電池系統希望能夠解決這五種問題,我們利用[22]證明出來的定理與推論,使用Matlab/Simulink來進行模擬,當一個要求(在此模擬是用電阻來代表負載)來,此電池交換網路便會根據 alternating C-transform (在演算法1) 與最大剩餘電量優先(LRCF, Largest Remaining Capacity First)機制來控制開關什麼時候要開什麼時候要關,最後可以由電池電量狀態(SOC, State of Charge)圖來看出是由哪幾個電池組來提供負載的需求電壓。


    Energy is a valuable asset on the planet. It can be divided into two types. One is renewable energy and the other one is non-renewable energy. Although renewable energy is inexhaustible, the efficiency of conversion is bad that it can't afford human use. Non-renewable energy such as oil, natural gas, coal and other fossil fuels is our main way to generate electricity. These fossil fuels are be generated by natural processes after millions of years, and they can't be renew. If we can't make the most of it, the day of energy depletion will come early. Nowadays, we begin to notice the issue of energy management. Then, how to efficiently manage and plan large-scale battery systems has become more popular recently.

    This paper is the extension of [22]. There are several issues in a large-scale battery systems, such as reliability, efficiency, sustainability, flexibility and complexity, that have been addressed in [22]. The battery switching network that they design and analysis hopes to solve these problems. We utilize theorem and corollary which is proved in [22] to simulate a battery switching network with Matlab/Simulink. When a request (we use a resistance to represent a load in this simulation) comes, the battery switching network will control switches to turn on or turn off at the proper time according to alternating C-transform (in algorithm 1) and Largest Remaining Capacity First (LRCF) mechanism. Finally, we can know which battery packs provide the required voltages of load by the figure of State of Charge.

    目錄. . . . . . . . . . 1 圖目錄. . . . . . . . . .1 第1章 介紹. . . . . . . . . .3 第2章 電池交換網路的建構. . . . . . . . . .5 2.1 選擇基底的最佳方法. . . . . . . . . .7 2.2 Alternating C-transform. . . . . . . . . . 9 2.3 多階前饋電池交換網路. . . . . . . . . . 11 2.4 容錯電池交換網路. . . . . . . . . . 12 第3章 實驗方法與結果. . . . . . . . . . 13 3.1 實驗參數. . . . . . . . . . 13 3.2 實驗結果. . . . . . . . . . 16 第4章 結論. . . . . . . . . . 22

    [1] G. Castelli, A. Macii, E. Macii, and M. Poncino, “Current-controlled policies for
    battery-driven dynamic power management,” in Electronics, Circuits and Systems,
    2001. ICECS 2001. The 8th IEEE International Conference on, vol. 2. IEEE, 2001,
    pp. 959–962.
    [2] T. Stuart, F. Fang, X. Wang, C. Ashtiani, and A. Pesaran, “A modular battery
    management system for hevs,” SAE Technical Paper, Tech. Rep., 2002.
    [3] S. Ci, J. Zhang, H. Sharif, and M. Alahmad, “A novel design of adaptive reconfigurable
    multicell battery for power-aware embedded networked sensing systems,”
    in Global Telecommunications Conference, 2007. GLOBECOM’07. IEEE. IEEE,
    2007, pp. 1043–1047.
    [4] H. Visairo and P. Kumar, “A reconfigurable battery pack for improving power conversion
    efficiency in portable devices,” in Devices, Circuits and Systems, 2008. ICCDCS
    2008. 7th International Caribbean Conference on. IEEE, 2008, pp. 1–6.
    [5] M. Alahmad, H. Hess, M. Mojarradi, W. West, and J. Whitacre, “Battery switch
    array system with application for jpl’s rechargeable micro-scale batteries,” Journal
    of Power Sources, vol. 177, no. 2, pp. 566–578, 2008.
    [6] H. Kim and K. G. Shin, “On dynamic reconfiguration of a large-scale battery system,”
    in Real-Time and Embedded Technology and Applications Symposium, 2009.
    RTAS 2009. 15th IEEE. IEEE, 2009, pp. 87–96.
    [7] ——, “Dependable, efficient, scalable architecture for management of large-scale
    batteries,” in Proceedings of the 1st ACM/IEEE International Conference on Cyber-
    Physical Systems. ACM, 2010, pp. 178–187.
    23
    [8] ——, “Efficient sensing matters a lot for large-scale batteries,” in Proceedings of
    the 2011 IEEE/ACM Second International Conference on Cyber-Physical Systems.
    IEEE Computer Society, 2011, pp. 197–205.
    [9] T. Kim, W. Qiao, and L. Qu, “A series-connected self-reconfigurable multicell battery
    capable of safe and effective charging/discharging and balancing operations,”
    in Applied Power Electronics Conference and Exposition (APEC), 2012 Twenty-
    Seventh Annual IEEE. IEEE, 2012, pp. 2259–2264.
    [10] S. Ci, J. Zhang, H. Sharif, and M. Alahmad, “Dynamic reconfigurable multi-cell
    battery: A novel approach to improve battery performance,” in Applied Power Electronics
    Conference and Exposition (APEC), 2012 Twenty-Seventh Annual IEEE.
    IEEE, 2012, pp. 439–442.
    [11] F. Jin and K. G. Shin, “Pack sizing and reconfiguration for management of largescale
    batteries,” in Cyber-Physical Systems (ICCPS), 2012 IEEE/ACM Third International
    Conference on. IEEE, 2012, pp. 138–147.
    [12] L. He, L. Gu, L. Kong, Y. Gu, C. Liu, and T. He, “Exploring adaptive reconfiguration
    to optimize energy efficiency in large-scale battery systems,” in Real-Time Systems
    Symposium (RTSS), 2013 IEEE 34th. IEEE, 2013, pp. 118–127.
    [13] [Online]. Source resistance: the efficiency killer in DC-DC converter circuits.
    http://www.maxim-ic.com.
    [14] [Online]. Understanding the Terms and Definitions of LDO Voltage Regulators.
    http://www.ti.com/lit/an/slva079/slva079.pdf.
    [15] [Online]. Dimension Engineering.
    https://www.dimensionengineering.com/info/switching-regulators.
    [16] S.-Y. R. Li, Algebraic switching theory and broadband applications. Academic Press,
    Inc., 2000.
    [17] F. K. Hwang and F. Hwang, The mathematical theory of nonblocking switching
    networks. World Scientific, 2004, vol. 15.
    24
    [18] R. Alter and J. A. Barnett, “A postage stamp problem,” American Mathematical
    Monthly, pp. 206–210, 1980.
    [19] E. S. Selmer, “On the postage stamp problem with the three stamp denominations.”
    Mathematica Scandinavica, vol. 47, pp. 29–71, 1980.
    [20] C.-C. Chou, C.-S. Chang, D.-S. Lee, and J. Cheng, “A necessary and sufficient
    condition for the construction of 2-to-1 optical fifo multiplexers by a single crossbar
    switch and fiber delay lines,” Information Theory, IEEE Transactions on, vol. 52,
    no. 10, pp. 4519–4531, 2006.
    [21] R. Nelson, Probability, stochastic processes, and queueing theory: the mathematics
    of computer performance modeling. Springer Science & Business Media, 1995.
    [22] Kai-Hsiang Yang, “Battery switching networks” National Tsing Hua University, 2015.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE