簡易檢索 / 詳目顯示

研究生: 陳宏鎮
Hung-Chen Chen
論文名稱: 一個基於音樂資料分群與使用者興趣之音樂推薦系統
A music recommendation system based on music data grouping and user interests
指導教授: 陳良弼
Arbee L. P. Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 27
中文關鍵詞: 音樂推薦知覺屬性瀏覽歷史推薦方法使用者側寫檔
外文關鍵詞: music recommendation, perceptual properties, access histories, recommendation methods, user profiles
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全球資訊網的蓬勃發展,我們可以在網路上取得大量的音樂資料。為了替使用者尋找其想要的音樂物件,發展相關的推薦服務便是迫切需要的。在本篇論文中,我們設計了一個音樂推薦系統來提供使用者個人化的音樂推薦服務。在這個音樂推薦系統中的音樂物件是採用MIDI的格式,對於每個以複音型態存在的音樂物件,我們會先挑選出這個音樂物件中具有代表性的音軌,再從這個音軌中擷取出六種不同的特徵。根據這些特徵,系統就可以將音樂物件加以分群。對於使用者來說,系統會分析使用者的瀏覽歷史以取得使用者的興趣。根據使用者喜好每個音樂群組的程度,我們提出三種不同的推薦方法以滿足使用者的需求。最後我們提出實驗的結果來證明我們系統中所採用的方式是可行的。


    With the growth of the World Wide Web, a large amount of music data is available on the Internet. In addition to searching expected music objects for users, it becomes necessary to develop a recommendation service. In this paper, we design the Music Recommendation System (MRS) to provide a personalized service of music recommendation. The music objects of MIDI format are first analyzed. For each polyphonic music object, the representative track is first determined, and then six features are extracted from this track. According to the features, the music objects are properly grouped. For users, the access histories are analyzed to derive user interests. The content-based, collaborative and statistics-based recommendation methods are proposed, which are based on the favorite degrees of the users to the music groups. A series of experiments are carried out to show that our approach is feasible.

    CONTENTS I LIST OF FIGURES II LIST OF TABLES III CHAPTER 1. INTRODUCTION 1 1.1 RELATED WORK 2 CHAPTER 2. MUSIC RECOMMENDATION SYSTEM 4 2.1. TRACK SELECTOR 5 2.2. FEATURE EXTRACTOR 6 2.3. CLASSIFIER 7 CHAPTER 3. RECOMMENDATION MECHANISMS 9 3.1. THE PROFILE MANAGER 9 3.2. THE CB METHOD 10 3.3. THE COL METHOD 11 3.4. THE STA METHOD 16 4.1. IMPLEMENTATION 17 4.2. EXPERIMENT RESULTS 19 4.2.1 Effectiveness of the track selector 19 4.2.2 Effectiveness of the feature selection 19 4.2.3 Quality of recommendations 20 CHAPTER 5. CONCLUSION 22 REFERENCE 23

    [Amaz] http://www.amazon.com.
    [Bala97] Balabanovic, M. and Y. Shoham, “Fab: Content-based Collaborative Filtering Recommendation,” Communications of the ACM, 40(3): 66-72, March 1997.
    [Basu98] Basu, C., H. Haym, and W. W. Cohen, “Recommendation as classification: Using social and content-based information in recommendation,” Proceedings of National Conference on Artificial Intelligence, 1998.
    [Bill99] Billsus, D. and M. Pazzani, “A Hybrid User Model for News Story Classification,” Proceedings of International Conference on User Modeling, June 1999.
    [Gold92] Goldberg, D., D. Nichols, B. M. Oki and D. Terry, “Using Collaborative Filtering to Weave an Information Tapestry,” Communications of the ACM, 35(12): 61-70, 1992.
    [Jain88] Jain, A. K. and R. C. Dubes, Algorithms for Clustering Data, 1st Edition, Prentice Hall, 1988
    [Krul96] Krulwich, B. and C. Burkey, “Learning User Information Interests through Extraction of Semantically Significant Phrases,” Proceedings of AAAI Spring Symposium on Machine Learning in Information Access, 1996.
    [Lang95] Lang K., “Newsweeder: Learning to Filter Netnews,” Proceedings of International Conference on Machine Learning, 1995.
    [Kons97] Konstan, J. A., B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon, and J. Riedl, “Grouplens: Applying Collaborative Filtering to Usenet News,” Communications of the ACM, 40(3): 77-87, March 1997.
    [Ruck97] Rucker J. and M. J. Polanco, “Personalized Navigation for the Web,” Communications of the ACM, 40(3): 73~75, March 1997.
    [Sayo00] Sayood, K., Introduction to Data Compression, 2nd Edition, Morgan Kaufmann, 2000.
    [Shar95] Sharadanand, U and P. Maes, “Social Information Filtering: Algorithms for Automating ‘Word of mouth’,” Proceedings of CHI’95 Conference on Human Factors in Computing Systems, 1995.
    [Smit00] B. Smith and P. Cotter, “A Personalized Television Listings Service,” Communications of the ACM, 43(8): 107-111, August 2000.
    [Uitd98] Uitdenbogerd, A. L. and Justin Zobel, “Manipulation of Music For Melody Matching,” Proceedings of the sixth ACM international conference on Multimedia, 1998, Pages 235 - 240
    [Wu01] Wu, Y. H., Y. C. Chen, and A. L. P. Chen, “Enabling Personalized Recommendation on the Web Based on User Interests and Behaviors,” Proceedings of IEEE International Workshop on Research Issues in Data Engineering (RIDE), 2001.
    [Yaho] http://www.yahoo.com.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE