簡易檢索 / 詳目顯示

研究生: 劉于瑄
Liu, Yu-Shiuan
論文名稱: 以細胞穿透胜肽發展標靶表皮癌細胞之新穎生醫材料
Development of a novel cell penetrating peptide based biomaterial for epithelial tumor targeting
指導教授: 張大慈
Chang, Dah-Tsyr
口試委員: 曾雲龍
趙致忠
方韶瓏
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 157
中文關鍵詞: 細胞穿透胜肽醣胺多醣表皮癌細胞標靶腫瘤抑制
外文關鍵詞: cell penetrating peptide, glycosaminoglycan, epithelial cancer targeting, tumor suppression
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細胞表面的醣胺多醣(glycosaminoglycan、GAG)調控癌細胞的分離(detachment)、移行(migration)、侵襲(invasion)、生長(proliferation)與血管新生(angiogenesis)。本實驗室於人類嗜酸性白血球陽離子蛋白(human eosinophil cationic protein、hECP)中核心硫酸乙醯肝素結合區域(heparan sulfate binding domain),發現一段無毒性、具有醣胺多醣結合和腫瘤組織靶向的細胞穿透胜肽(cell penetrating peptide derived from eosinophil cationic protein、CPPecp)。本研究利用酵素連結免疫法(enzyme-linked immunosorbent assay、ELISA) 分析異硫氰酸螢光素標定的CPPecp (FITC-CPPecp)會隨著濃度上升提高與人類肺上皮細胞腺癌(A549)、人類大細胞肺癌(H460)和人類乳腺細胞癌(MDA-MB-231)細胞株表面結合的能力。此外,利用侵襲小室(Transwell®)分析癌細胞移行及侵襲能力,發現CPPecp能有效抑制A549、H460和MDA-MB-231癌細胞移行及侵襲。實際應用CPPecp以增加抗癌藥物對腫瘤細胞的毒殺效果時,本研究以非共價鍵結法混合CPPecp與微脂體藥物,發現CPPecp不會促使藥物自微脂體中漏出,但可提升微脂體藥物對腫瘤細胞的毒殺效率,降低A549肺癌細胞存活率。另一方面,本研究利用化學合成法製備以共價鍵結合之CPPecp與磷脂質化合物,用基質輔助激光解析電離飛行時間質譜儀(matrix-assisted laser desorption-ionization time-of-flight mass spectrometry、MALDI-TOF MS)分析,確認CPPecp可成功連接至磷脂質分子。未來可將合成產物之磷脂質端鑲嵌至微脂體藥物,利用CPPecp癌細胞標靶及細胞穿透能力之特性發展微脂體藥物傳遞系統。本研究發現具有硫酸乙醯肝素結合及細胞穿透能力的CPPecp,可有效抑制肺癌及乳癌細胞移行與侵襲能力,並可化學修飾連接至磷脂質,發展以CPPecp為基礎開發表皮癌細胞標靶之新穎生醫材料。


    Glycosaminoglycan (GAG) regulates cancer cell metastasis, which in general involves cell detachment, migration, invasion, proliferation and angiogenesis. Recently, our laboratory identified a non-toxic, GAG-binding, cancer tissue targeting and cell penetrating peptide (CPPecp) derived from heparan sulfate binding domain of human eosinophil cationic protein (hECP). Fluorescein isothiocyanate (FITC)-labeled CPPecp bound to human lung epithelial, large celcancer cells (A549 and H460) and breast adenocarcinoma (MDA-MB-231) in a dose-dependent manner. Besides, in vitro assay employing Transwell® apparatus revealed that CPPecp inhibited migration and invasion of human lung (A549 and H460) and breast (MDA-MB-231) cancer cells. Practical applicate of our discovery to improve efficacy of anti-tumor liposomal drug, CPPecp was non-covalently mixed with an anti-tumor liposomal drug. This complex showed higher cytotoxicity toward A549 cells as compared with liposomal drug alone, and CPPecp did not stimulate drug leakage from liposome. In addition, covalent linkage of amine group CPPecp to NHS-modified phospholipid was carried out employing chemical synthesis. Molecular weight determination of CPPecp conjugated phospholipid was performed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). CPPecp-phospholipid conjugate will be integrated to liposomal drug. It will lead to further development of novel tumor targeting and cell penetrating peptide-based liposomal drug delivery system in the near future. In conclusion, CPPecp not only inhibits cancer cell migration and invasion but also improves efficacy of liposomal drug toward cancer cells, which in turn may facilitate development of a novel cell penetrating peptide-based biomaterial for epithelial tumor targeting.

    中文摘要 Abstract 致謝 List of contents List of Figures List of Tables List of Appendices Abbreviates Chapter 1 Introduction Specific Aims Chapter 2 Materials and Methods Chapter 3 Results Chapter 4 Discussion Reference Figures Tables Appendices

    1. Chen, C.J., et al., Cancer epidemiology and control in Taiwan: a brief review. Jpn J Clin Oncol, 2002. 32 Suppl: p. S66-81.
    2. Chen, Y.F., et al., Houttuynia cordata Thunb extract modulates G0/G1 arrest and Fas/CD95-mediated death receptor apoptotic cell death in human lung cancer A549 cells. J Biomed Sci, 2013. 20: p. 18.
    3. Fidler, I.J., The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer, 2003. 3(6): p. 453-8.
    4. Tantivejkul, K., L.M. Kalikin, and K.J. Pienta, Dynamic process of prostate cancer metastasis to bone. J Cell Biochem, 2004. 91(4): p. 706-17.
    5. Halbersztadt, A., et al., The role of matrix metalloproteinases in tumor invasion and metastasis. Ginekol Pol, 2006. 77(1): p. 63-71.
    6. Kohn, E.C. and L.A. Liotta, Molecular insights into cancer invasion: strategies for prevention and intervention. Cancer Res, 1995. 55(9): p. 1856-62.
    7. Liotta, L.A. and W.G. Stetler-Stevenson, Tumor invasion and metastasis: an imbalance of positive and negative regulation. Cancer Res, 1991. 51(18 Suppl): p. 5054s-5059s.
    8. Afratis, N., et al., Glycosaminoglycans: key players in cancer cell biology and treatment. FEBS J, 2012. 279(7): p. 1177-97.
    9. Esko, J.D., K. Kimata, and U. Lindahl, Proteoglycans and Sulfated Glycosaminoglycans, in Essentials of Glycobiology, A. Varki, et al., Editors. 2009: Cold Spring Harbor (NY).
    10. Sasisekharan, R., et al., Roles of heparan-sulphate glycosaminoglycans in cancer. Nat Rev Cancer, 2002. 2(7): p. 521-8.
    11. Liu, D., et al., Dynamic regulation of tumor growth and metastasis by heparan sulfate glycosaminoglycans. Semin Thromb Hemost, 2002. 28(1): p. 67-78.
    12. Sarrazin, S., W.C. Lamanna, and J.D. Esko, Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol, 2011. 3(7).
    13. Coombe, D.R., Biological implications of glycosaminoglycan interactions with haemopoietic cytokines. Immunol Cell Biol, 2008. 86(7): p. 598-607.
    14. Parish, C.R., The role of heparan sulphate in inflammation. Nat Rev Immunol, 2006. 6(9): p. 633-43.
    15. Bishop, J.R., M. Schuksz, and J.D. Esko, Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature, 2007. 446(7139): p. 1030-7.
    16. Knelson, E.H., J.C. Nee, and G.C. Blobe, Heparan sulfate signaling in cancer. Trends Biochem Sci, 2014. 39(6): p. 277-88.
    17. Hirabayashi, K., et al., Altered proliferative and metastatic potential associated with increased expression of syndecan-1. Tumour Biol, 1998. 19(6): p. 454-63.
    18. Barbareschi, M., et al., High syndecan-1 expression in breast carcinoma is related to an aggressive phenotype and to poorer prognosis. Cancer, 2003. 98(3): p. 474-83.
    19. Li, R., et al., MicroRNA-143 targets Syndecan-1 to repress cell growth in melanoma. PLoS One, 2014. 9(4): p. e94855.
    20. Hrabar, D., et al., Epithelial and stromal expression of syndecan-2 in pancreatic carcinoma. Anticancer Res, 2010. 30(7): p. 2749-53.
    21. Park, H., et al., Syndecan-2 mediates adhesion and proliferation of colon carcinoma cells. J Biol Chem, 2002. 277(33): p. 29730-6.
    22. Matsuda, K., et al., Glypican-1 is overexpressed in human breast cancer and modulates the mitogenic effects of multiple heparin-binding growth factors in breast cancer cells. Cancer Res, 2001. 61(14): p. 5562-9.
    23. Li, Y., et al., The overexpression of glypican-5 promotes cancer cell migration and is associated with shorter overall survival in non-small cell lung cancer. Oncol Lett, 2013. 6(6): p. 1565-1572.
    24. Horai, T., [Glycosaminoglycans in human normal lung tissues and lung cancer tissues]. Nihon Kyobu Shikkan Gakkai Zasshi, 1990. 28(11): p. 1442-9.
    25. Masuda, H., et al., Analyses of glycosaminoglycans in human lung cancer. Biochem Med Metab Biol, 1987. 37(3): p. 366-73.
    26. Horai, T., et al., Glycosaminoglycans in human lung cancer. Cancer, 1981. 48(9): p. 2016-21.
    27. Grigoriu, B.D., et al., Endocan expression and relationship with survival in human non-small cell lung cancer. Clin Cancer Res, 2006. 12(15): p. 4575-82.
    28. Raman, K. and B. Kuberan, Chemical Tumor Biology of Heparan Sulfate Proteoglycans. Curr Chem Biol. 4(1): p. 20-31.
    29. Cooney, C.A., et al., Chondroitin sulfates play a major role in breast cancer metastasis: a role for CSPG4 and CHST11 gene expression in forming surface P-selectin ligands in aggressive breast cancer cells. Breast Cancer Res, 2011. 13(3): p. R58.
    30. Vijayagopal, P., J.E. Figueroa, and E.A. Levine, Altered composition and increased endothelial cell proliferative activity of proteoglycans isolated from breast carcinoma. J Surg Oncol, 1998. 68(4): p. 250-4.
    31. Asimakopoulou, A.P., et al., The biological role of chondroitin sulfate in cancer and chondroitin-based anticancer agents. In Vivo, 2008. 22(3): p. 385-9.
    32. Yip, G.W., M. Smollich, and M. Gotte, Therapeutic value of glycosaminoglycans in cancer. Mol Cancer Ther, 2006. 5(9): p. 2139-48.
    33. Fujii, M., et al., Cytoplasmic expression of the JM403 antigen GlcA-GlcNH3+ on heparan sulfate glycosaminoglycan in mammary carcinomas--a novel proliferative biomarker for breast cancers with high malignancy. Glycoconj J. 27(7-9): p. 661-72.
    34. Adany, R., et al., Altered expression of chondroitin sulfate proteoglycan in the stroma of human colon carcinoma. Hypomethylation of PG-40 gene correlates with increased PG-40 content and mRNA levels. J Biol Chem, 1990. 265(19): p. 11389-96.
    35. Raman, K. and B. Kuberan, Chemical Tumor Biology of Heparan Sulfate Proteoglycans. Curr Chem Biol, 2010. 4(1): p. 20-31.
    36. Zuo, L., et al., Correlation between expression and differentiation of endocan in colorectal cancer. World J Gastroenterol, 2008. 14(28): p. 4562-8.
    37. Yang, Y., et al., The syndecan-1 heparan sulfate proteoglycan is a viable target for myeloma therapy. Blood, 2007. 110(6): p. 2041-8.
    38. Masuda, H., et al., Composition of glycosaminoglycans in human pancreatic cancer. Biochem Med Metab Biol, 1989. 41(3): p. 193-200.
    39. Hrabar, D., et al., Epithelial and stromal expression of syndecan-2 in pancreatic carcinoma. Anticancer Res. 30(7): p. 2749-53.
    40. Kleeff, J., et al., The cell-surface heparan sulfate proteoglycan glypican-1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer. J Clin Invest, 1998. 102(9): p. 1662-73.
    41. Theocharis, A.D., et al., Altered content composition and structure of glycosaminoglycans and proteoglycans in gastric carcinoma. Int J Biochem Cell Biol, 2003. 35(3): p. 376-90.
    42. Hishinuma, M., et al., Hepatocellular oncofetal protein, glypican 3 is a sensitive marker for alpha-fetoprotein-producing gastric carcinoma. Histopathology, 2006. 49(5): p. 479-86.
    43. De Klerk, D.P., D.V. Lee, and H.J. Human, Glycosaminoglycans of human prostatic cancer. J Urol, 1984. 131(5): p. 1008-12.
    44. Katzel, J.A., M.P. Fanucchi, and Z. Li, Recent advances of novel targeted therapy in non-small cell lung cancer. J Hematol Oncol, 2009. 2: p. 2.
    45. Tiwari, G., et al., Drug delivery systems: An updated review. Int J Pharm Investig, 2012. 2(1): p. 2-11.
    46. Hong, J.H., et al., A prospective evaluation of psoas muscle and intravascular injection in lumbar sympathetic ganglion block. Anesth Analg, 2010. 111(3): p. 802-7.
    47. Bourges, J.L., et al., Drug delivery systems for intraocular applications. J Fr Ophtalmol, 2007. 30(10): p. 1070-88.
    48. Allen, T.M. and P.R. Cullis, Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev, 2013. 65(1): p. 36-48.
    49. Pierre, M.B. and I. Dos Santos Miranda Costa, Liposomal systems as drug delivery vehicles for dermal and transdermal applications. Arch Dermatol Res, 2011. 303(9): p. 607-21.
    50. Mitra, A. and B. Dey, Chitosan microspheres in novel drug delivery systems. Indian J Pharm Sci, 2011. 73(4): p. 355-66.
    51. Fattal, E., G. De Rosa, and A. Bochot, Gel and solid matrix systems for the controlled delivery of drug carrier-associated nucleic acids. Int J Pharm, 2004. 277(1-2): p. 25-30.
    52. Kojima, C., et al., Doxorubicin-conjugated dendrimer/collagen hybrid gels for metastasis-associated drug delivery systems. Acta Biomater, 2013. 9(3): p. 5673-80.
    53. Sawant, R. and V. Torchilin, Intracellular transduction using cell-penetrating peptides. Mol Biosyst, 2010. 6(4): p. 628-40.
    54. Bian, J., et al., Effect of cell-based intercellular delivery of transcription factor GATA4 on ischemic cardiomyopathy. Circ Res, 2007. 100(11): p. 1626-33.
    55. Chen, Z.Y., et al., Cyclic RGD peptide-modified liposomal drug delivery system: enhanced cellular uptake in vitro and improved pharmacokinetics in rats. International Journal of Nanomedicine, 2012. 7: p. 3803-3811.
    56. Lee, T.Y., et al., A novel peptide specifically binding to nasopharyngeal carcinoma for targeted drug delivery. Cancer Res, 2004. 64(21): p. 8002-8.
    57. Biswas, S., et al., Octa-arginine-modified pegylated liposomal doxorubicin: an effective treatment strategy for non-small cell lung cancer. Cancer Lett, 2013. 335(1): p. 191-200.
    58. Koren, E., et al., Multifunctional PEGylated 2C5-immunoliposomes containing pH-sensitive bonds and TAT peptide for enhanced tumor cell internalization and cytotoxicity. Journal of Controlled Release, 2012. 160(2): p. 264-273.
    59. Apte, A., et al., Doxorubicin in TAT peptide-modified multifunctional immunoliposomes demonstrates increased activity against both drug-sensitive and drug-resistant ovarian cancer models. Cancer Biol Ther, 2014. 15(1): p. 69-80.
    60. Yang, W.H., et al., TMTP1, a novel tumor-homing peptide specifically targeting metastasis. Clinical Cancer Research, 2008. 14(17): p. 5494-5502.
    61. Wang, Z.H., et al., The use of a tumor metastasis targeting peptide to deliver doxorubicin-containing liposomes to highly metastatic cancer. Biomaterials, 2012. 33(33): p. 8451-8460.
    62. Chen, Z., et al., Cyclic RGD peptide-modified liposomal drug delivery system: enhanced cellular uptake in vitro and improved pharmacokinetics in rats. Int J Nanomedicine, 2012. 7: p. 3803-11.
    63. Biswas, S., et al., Octa-arginine-modified pegylated liposomal doxorubicin: An effective treatment strategy for non-small cell lung cancer. Cancer Lett, 2013.
    64. Biswas, S., et al., Surface functionalization of doxorubicin-loaded liposomes with octa-arginine for enhanced anticancer activity. Eur J Pharm Biopharm, 2013. 84(3): p. 517-25.
    65. Koren, E., et al., Multifunctional PEGylated 2C5-immunoliposomes containing pH-sensitive bonds and TAT peptide for enhanced tumor cell internalization and cytotoxicity. J Control Release, 2012. 160(2): p. 264-73.
    66. Franzen, U., et al., Physicochemical characterization of a PEGylated liposomal drug formulation using capillary electrophoresis. Electrophoresis, 2011. 32(6-7): p. 738-48.
    67. Metselaar, J.M., E. Mastrobattista, and G. Storm, Liposomes for intravenous drug targeting: design and applications. Mini Rev Med Chem, 2002. 2(4): p. 319-29.
    68. Torchilin, V.P., Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov, 2005. 4(2): p. 145-60.
    69. Karn, P.R., W. Cho, and S.J. Hwang, Liposomal drug products and recent advances in the synthesis of supercritical fluid-mediated liposomes. Nanomedicine (Lond), 2013. 8(9): p. 1529-48.
    70. Papahadjopoulos, D., et al., Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci U S A, 1991. 88(24): p. 11460-4.
    71. Waterhouse, D.N., et al., A comparison of liposomal formulations of doxorubicin with drug administered in free form: changing toxicity profiles. Drug Saf, 2001. 24(12): p. 903-20.
    72. Green, A.E. and P.G. Rose, Pegylated liposomal doxorubicin in ovarian cancer. Int J Nanomedicine, 2006. 1(3): p. 229-39.
    73. Davidson, R.N., et al., Liposomal amphotericin B (AmBisome) in Mediterranean visceral leishmaniasis: a multi-centre trial. Q J Med, 1994. 87(2): p. 75-81.
    74. Hann, I.M. and H.G. Prentice, Lipid-based amphotericin B: a review of the last 10 years of use. Int J Antimicrob Agents, 2001. 17(3): p. 161-9.
    75. Walsh, T.J., et al., Amphotericin B lipid complex for invasive fungal infections: analysis of safety and efficacy in 556 cases. Clin Infect Dis, 1998. 26(6): p. 1383-96.
    76. Gambling, D., et al., A comparison of Depodur, a novel, single-dose extended-release epidural morphine, with standard epidural morphine for pain relief after lower abdominal surgery. Anesth Analg, 2005. 100(4): p. 1065-74.
    77. Glantz, M.J., et al., A randomized controlled trial comparing intrathecal sustained-release cytarabine (DepoCyt) to intrathecal methotrexate in patients with neoplastic meningitis from solid tumors. Clin Cancer Res, 1999. 5(11): p. 3394-402.
    78. Patrick, M.R., et al., A comparison of the haemodynamic effects of propofol ('Diprivan') and thiopentone in patients with coronary artery disease. Postgrad Med J, 1985. 61 Suppl 3: p. 23-7.
    79. Simon, J.A. and E.S. Group, Estradiol in micellar nanoparticles: the efficacy and safety of a novel transdermal drug-delivery technology in the management of moderate to severe vasomotor symptoms. Menopause, 2006. 13(2): p. 222-31.
    80. Glantz, M.J., et al., Randomized trial of a slow-release versus a standard formulation of cytarabine for the intrathecal treatment of lymphomatous meningitis. J Clin Oncol, 1999. 17(10): p. 3110-6.
    81. Blade, J., et al., Efficacy and safety of pegylated liposomal Doxorubicin in combination with bortezomib for multiple myeloma: effects of adverse prognostic factors on outcome. Clin Lymphoma Myeloma Leuk, 2011. 11(1): p. 44-9.
    82. Barenholz, Y., Doxil(R)--the first FDA-approved nano-drug: lessons learned. J Control Release, 2012. 160(2): p. 117-34.
    83. Porche, D.J., Liposomal doxorubicin (Doxil). J Assoc Nurses AIDS Care, 1996. 7(2): p. 55-9.
    84. James, N.D., et al., Liposomal doxorubicin (Doxil): an effective new treatment for Kaposi's sarcoma in AIDS. Clin Oncol (R Coll Radiol), 1994. 6(5): p. 294-6.
    85. Bowden, R., et al., A double-blind, randomized, controlled trial of amphotericin B colloidal dispersion versus amphotericin B for treatment of invasive aspergillosis in immunocompromised patients. Clin Infect Dis, 2002. 35(4): p. 359-66.
    86. Batist, G., et al., Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J Clin Oncol, 2001. 19(5): p. 1444-54.
    87. Veronese, F.M. and A. Mero, The impact of PEGylation on biological therapies. BioDrugs, 2008. 22(5): p. 315-29.
    88. Kan, P., A brief review on development of liposome in Taiwan. Journal of medical and biological engineering, 2007. 27(1).
    89. Hanada, M., et al., A new antitumor agent amrubicin induces cell growth inhibition by stabilizing topoisomerase II-DNA complex. Jpn J Cancer Res, 1998. 89(11): p. 1229-38.
    90. Sturgeon, K., et al., Concomitant Low Dose Doxorubicin Treatment and Exercise. Am J Physiol Regul Integr Comp Physiol, 2014.
    91. Verdurmen, W.P. and R. Brock, Biological responses towards cationic peptides and drug carriers. Trends Pharmacol Sci, 2011. 32(2): p. 116-24.
    92. Snyder, E.L. and S.F. Dowdy, Cell penetrating peptides in drug delivery. Pharm Res, 2004. 21(3): p. 389-93.
    93. Bolhassani, A., Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer. Biochim Biophys Acta, 2011. 1816(2): p. 232-46.
    94. Jarver, P. and U. Langel, Cell-penetrating peptides--a brief introduction. Biochim Biophys Acta, 2006. 1758(3): p. 260-3.
    95. Kersemans, V., K. Kersemans, and B. Cornelissen, Cell penetrating peptides for in vivo molecular imaging applications. Curr Pharm Des, 2008. 14(24): p. 2415-47.
    96. Dietz, G.P. and M. Bahr, Delivery of bioactive molecules into the cell: the Trojan horse approach. Mol Cell Neurosci, 2004. 27(2): p. 85-131.
    97. Bechara, C. and S. Sagan, Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett, 2013. 587(12): p. 1693-702.
    98. Meade, B.R. and S.F. Dowdy, Enhancing the cellular uptake of siRNA duplexes following noncovalent packaging with protein transduction domain peptides. Adv Drug Deliv Rev, 2008. 60(4-5): p. 530-6.
    99. Gupta, B., T.S. Levchenko, and V.P. Torchilin, Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv Drug Deliv Rev, 2005. 57(4): p. 637-51.
    100. Gao, S., et al., An unusual cell penetrating peptide identified using a plasmid display-based functional selection platform. ACS Chem Biol, 2011. 6(5): p. 484-91.
    101. Radis-Baptista, G., B.G. de la Torre, and D. Andreu, Insights into the uptake mechanism of NrTP, a cell-penetrating peptide preferentially targeting the nucleolus of tumour cells. Chem Biol Drug Des, 2012. 79(6): p. 907-15.
    102. Madani, F., et al., Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys, 2011. 2011: p. 414729.
    103. Ruoslahti, E., T. Duza, and L. Zhang, Vascular homing peptides with cell-penetrating properties. Curr Pharm Des, 2005. 11(28): p. 3655-60.
    104. Kanwar, J.R., et al., Cell-penetrating properties of the transactivator of transcription and polyarginine (R9) peptides, their conjugative effect on nanoparticles and the prospect of conjugation with arsenic trioxide. Anticancer Drugs, 2012. 23(5): p. 471-82.
    105. Kerkis, A., et al., Properties of cell penetrating peptides (CPPs). IUBMB Life, 2006. 58(1): p. 7-13.
    106. Heitz, F., M.C. Morris, and G. Divita, Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol, 2009. 157(2): p. 195-206.
    107. Madani, F., et al., Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys, 2011. 2011: p. 414729-39.
    108. Richard, M.J., et al., Human immunodeficiency virus type 1 Tat protein impairs selenoglutathione peroxidase expression and activity by a mechanism independent of cellular selenium uptake: consequences on cellular resistance to UV-A radiation. Arch Biochem Biophys, 2001. 386(2): p. 213-20.
    109. El-Sayed, A.A. and N.A. El-Salem, Recent developments of derivative spectrophotometry and their analytical applications. Anal Sci, 2005. 21(6): p. 595-614.
    110. Wadia, J.S., R.V. Stan, and S.F. Dowdy, Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med, 2004. 10(3): p. 310-5.
    111. Ferrari, A., et al., Caveolae-mediated internalization of extracellular HIV-1 tat fusion proteins visualized in real time. Mol Ther, 2003. 8(2): p. 284-94.
    112. Alblas, J., et al., Activation of Rhoa and ROCK are essential for detachment of migrating leukocytes. Mol Biol Cell, 2001. 12(7): p. 2137-45.
    113. Joliot, A. and A. Prochiantz, Transduction peptides: from technology to physiology. Nat Cell Biol, 2004. 6(3): p. 189-96.
    114. Prochiantz, A., Getting hydrophilic compounds into cells: lessons from homeopeptides. Curr Opin Neurobiol, 1996. 6(5): p. 629-34.
    115. Pooga, M., et al., Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat Biotechnol, 1998. 16(9): p. 857-61.
    116. Elliott, G. and P. O'Hare, Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell, 1997. 88(2): p. 223-33.
    117. Deshayes, S., et al., Interactions of amphipathic CPPs with model membranes. Methods Mol Biol, 2011. 683: p. 41-56.
    118. Pujals, S., et al., Mechanistic aspects of CPP-mediated intracellular drug delivery: relevance of CPP self-assembly. Biochim Biophys Acta, 2006. 1758(3): p. 264-79.
    119. Morris, M.C., et al., Cell-penetrating peptides: from molecular mechanisms to therapeutics. Biol Cell, 2008. 100(4): p. 201-17.
    120. Gros, E., et al., A non-covalent peptide-based strategy for protein and peptide nucleic acid transduction. Biochim Biophys Acta, 2006. 1758(3): p. 384-93.
    121. Schmidt, M.C., et al., Translocation of human calcitonin in respiratory nasal epithelium is associated with self-assembly in lipid membrane. Biochemistry, 1998. 37(47): p. 16582-90.
    122. Rousselle, C., et al., Enhanced delivery of doxorubicin into the brain via a peptide-vector-mediated strategy: saturation kinetics and specificity. J Pharmacol Exp Ther, 2001. 296(1): p. 124-31.
    123. Elmquist, A., et al., VE-cadherin-derived cell-penetrating peptide, pVEC, with carrier functions. Exp Cell Res, 2001. 269(2): p. 237-44.
    124. Gleich, G.J. and C.R. Adolphson, The eosinophilic leukocyte: structure and function. Adv Immunol, 1986. 39: p. 177-253.
    125. Ackerman, S.J., et al., Distinctive cationic proteins of the human eosinophil granule: major basic protein, eosinophil cationic protein, and eosinophil-derived neurotoxin. J Immunol, 1983. 131(6): p. 2977-82.
    126. Rosenberg, H.F., RNase A ribonucleases and host defense: an evolving story. J Leukoc Biol, 2008. 83(5): p. 1079-87.
    127. Yang, D., et al., Human ribonuclease A superfamily members, eosinophil-derived neurotoxin and pancreatic ribonuclease, induce dendritic cell maturation and activation. J Immunol, 2004. 173(10): p. 6134-42.
    128. Torrent, M., et al., Topography studies on the membrane interaction mechanism of the eosinophil cationic protein. Biochemistry, 2007. 46(3): p. 720-33.
    129. Nikolovski, Z., et al., Thermal unfolding of eosinophil cationic protein/ribonuclease 3: a nonreversible process. Protein Sci, 2006. 15(12): p. 2816-27.
    130. Venge, P., et al., Eosinophil cationic protein (ECP): molecular and biological properties and the use of ECP as a marker of eosinophil activation in disease. Clin Exp Allergy, 1999. 29(9): p. 1172-86.
    131. Trivedi, S.G. and C.M. Lloyd, Eosinophils in the pathogenesis of allergic airways disease. Cell Mol Life Sci, 2007. 64(10): p. 1269-89.
    132. Rosenberg, H.F., Eosinophil-derived neurotoxin / RNase 2: connecting the past, the present and the future. Curr Pharm Biotechnol, 2008. 9(3): p. 135-40.
    133. Gleich, G.J., et al., Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease. Proc Natl Acad Sci U S A, 1986. 83(10): p. 3146-50.
    134. Fan, T.C., et al., A heparan sulfate-facilitated and raft-dependent macropinocytosis of eosinophil cationic protein. Traffic, 2007. 8(12): p. 1778-95.
    135. Lien, P.C., et al., In silico prediction and in vitro characterization of multifunctional human RNase3. Biomed Res Int, 2013. 2013: p. 170398.
    136. Cardin, A.D. and H.J. Weintraub, Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis, 1989. 9(1): p. 21-32.
    137. Garcia-Mayoral, M.F., et al., NMR structural determinants of eosinophil cationic protein binding to membrane and heparin mimetics. Biophys J, 2010. 98(11): p. 2702-11.
    138. Tan-chi Fan, S.-l.F., Chi-shin Hwang, Chih-yen Hsu, Xin-an Lu, Shang-cheng Hung, Shu-Chuan Lin and Margaret Dah-Tsyr Chang, Characterization of Molecular Interactions between Eosinophil Cationic Protein and Heparin. The jornal of biological chemistry, 2008. 283(37): p. 25468-25474.
    139. Fang, S.L., et al., A novel cell-penetrating peptide derived from human eosinophil cationic protein. PLoS One, 2013. 8(3): p. e57318.
    140. Lin, S.C., T.C. Fan, and M.D.T. Chang, Characterization of heparan sulfate as a cell surface attachment molecule for human eosinophil ribonucleases. Febs Journal, 2007. 274: p. 98-98.
    141. O'Brien, J., et al., Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem, 2000. 267(17): p. 5421-6.
    142. Na, K., et al., Elastin-like polypeptide modified liposomes for enhancing cellular uptake into tumor cells. Colloids Surf B Biointerfaces, 2012. 91: p. 130-6.
    143. Han, H.D., B.C. Shin, and H.S. Choi, Doxorubicin-encapsulated thermosensitive liposomes modified with poly(N-isopropylacrylamide-co-acrylamide): drug release behavior and stability in the presence of serum. Eur J Pharm Biopharm, 2006. 62(1): p. 110-6.
    144. Calabro, A., et al., Microanalysis of enzyme digests of hyaluronan and chondroitin/dermatan sulfate by fluorophore-assisted carbohydrate electrophoresis (FACE). Glycobiology, 2000. 10(3): p. 273-81.
    145. Sanderson, R.D., Heparan sulfate proteoglycans in invasion and metastasis. Semin Cell Dev Biol, 2001. 12(2): p. 89-98.
    146. Marshall, J., Transwell((R)) invasion assays. Methods Mol Biol, 2011. 769: p. 97-110.
    147. Lu, P., V.M. Weaver, and Z. Werb, The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol, 2012. 196(4): p. 395-406.
    148. Chang, W.T., Characterization and Identification of Heparin/Heparan Sulfate Binding Motifs on Human Eosinophil Derived Neurotoxin. Master thesis., 2010.
    149. Calabro, A., et al., Fluorophore-assisted carbohydrate electrophoresis (FACE) of glycosaminoglycans. Osteoarthritis Cartilage, 2001. 9 Suppl A: p. S16-22.
    150. Chang, H.-H., Analysis and Application of Human Eosinophil Cationic Protein and ECP-Derived Peptide to Negatively Charged Molecules 2013, National Tsing Hua University. p. 30-31.
    151. Immordino, M.L., F. Dosio, and L. Cattel, Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine, 2006. 1(3): p. 297-315.
    152. Liu, R., et al., Chitosan as a condensing agent induces high gene transfection efficiency and low cytotoxicity of liposome. J Biosci Bioeng, 2011. 111(1): p. 98-103.
    153. O'Shaughnessy, J.A., Pegylated liposomal doxorubicin in the treatment of breast cancer. Clin Breast Cancer, 2003. 4(5): p. 318-28.
    154. Koshkaryev, A., A. Piroyan, and V.P. Torchilin, Bleomycin in octaarginine-modified fusogenic liposomes results in improved tumor growth inhibition. Cancer Lett, 2013. 334(2): p. 293-301.
    155. Qin, M., H. Zong, and R. Kopelman, Click Conjugation of Peptide to Hydrogel Nanoparticles for Tumor-Targeted Drug Delivery. Biomacromolecules, 2014.
    156. Tang, J., et al., Liposomes co-modified with cholesterol anchored cleavable PEG and octaarginines for tumor targeted drug delivery. J Drug Target, 2014. 22(4): p. 313-26.
    157. Azad, A., et al., Co-targeting deoxyribonucleic acid-dependent protein kinase and poly(adenosine diphosphate-ribose) polymerase-1 promotes accelerated senescence of irradiated cancer cells. Int J Radiat Oncol Biol Phys, 2014. 88(2): p. 385-94.
    158. Chen, Z., et al., Controlled release of free doxorubicin from peptide-drug conjugates by drug loading. J Control Release, 2014.
    159. Fischer, M.J., Amine coupling through EDC/NHS: a practical approach. Methods Mol Biol, 2010. 627: p. 55-73.
    160. Kowalczyk, C. and M. O'Shea, Solid-phase synthesis of neuropeptides by Fmoc strategies. Methods Mol Biol, 1997. 73: p. 41-8.
    161. Dick, F., Acid cleavage/deprotection in Fmoc/tBu solid-phase peptide synthesis. Methods Mol Biol, 1994. 35: p. 63-72.
    162. Chaudhuri, M.K. and V.A. Najjar, Solid-phase tuftsin (Thr-Lys-Pro-Arg) synthesis: deprotection and resin cleavage with trifluoromethane sulfonic acid. Anal Biochem, 1979. 95(1): p. 305-10.
    163. Guy, C.A. and G.B. Fields, Trifluoroacetic acid cleavage and deprotection of resin-bound peptides following synthesis by Fmoc chemistry. Methods Enzymol, 1997. 289: p. 67-83.
    164. Kishida, Y. and S. Sakakibara, [Synthesis of peptides by solid phase method. 1]. Tanpakushitsu Kakusan Koso, 1971. 16(5): p. 384-91.
    165. Wang, J.L., et al., Combination of targeted PDT and anti-VEGF therapy for rat CNV by RGD-modified liposomal photocyanine and sorafenib. Invest Ophthalmol Vis Sci, 2013. 54(13): p. 7983-9.
    166. Tumova, S., A. Woods, and J.R. Couchman, Heparan sulfate proteoglycans on the cell surface: versatile coordinators of cellular functions. Int J Biochem Cell Biol, 2000. 32(3): p. 269-88.
    167. Khachigian, L.M. and C.R. Parish, Phosphomannopentaose sulfate (PI-88): heparan sulfate mimetic with clinical potential in multiple vascular pathologies. Cardiovasc Drug Rev, 2004. 22(1): p. 1-6.
    168. Zhang, L., G.C. Parry, and E.G. Levin, Inhibition of tumor cell migration by LD22-4, an N-terminal fragment of 24-kDa FGF2, is mediated by Neuropilin 1. Cancer Res, 2013. 73(11): p. 3316-25.
    169. Lee, T.Y., J. Folkman, and K. Javaherian, HSPG-binding peptide corresponding to the exon 6a-encoded domain of VEGF inhibits tumor growth by blocking angiogenesis in murine model. PLoS One, 2010. 5(4): p. e9945.
    170. Hibino, S., et al., Laminin alpha5 chain metastasis- and angiogenesis-inhibiting peptide blocks fibroblast growth factor 2 activity by binding to the heparan sulfate chains of CD44. Cancer Res, 2005. 65(22): p. 10494-501.
    171. Hibino, S., et al., Identification of an active site on the laminin alpha5 chain globular domain that binds to CD44 and inhibits malignancy. Cancer Res, 2004. 64(14): p. 4810-6.
    172. Ciardiello, F. and G. Tortora, EGFR antagonists in cancer treatment. N Engl J Med, 2008. 358(11): p. 1160-74.
    173. Dhillon, A.S., et al., MAP kinase signalling pathways in cancer. Oncogene, 2007. 26(22): p. 3279-90.
    174. Marshall, C.J., Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell, 1995. 80(2): p. 179-85.
    175. Schlaepfer, D.D., C.R. Hauck, and D.J. Sieg, Signaling through focal adhesion kinase. Prog Biophys Mol Biol, 1999. 71(3-4): p. 435-78.
    176. Reif, S., et al., The role of focal adhesion kinase-phosphatidylinositol 3-kinase-akt signaling in hepatic stellate cell proliferation and type I collagen expression. J Biol Chem, 2003. 278(10): p. 8083-90.
    177. Gong, Y., U.D. Chippada-Venkata, and W.K. Oh, Roles of matrix metalloproteinases and their natural inhibitors in prostate cancer progression. Cancers (Basel), 2014. 6(3): p. 1298-327.
    178. Bergers, G., et al., Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol, 2000. 2(10): p. 737-44.
    179. Stetler-Stevenson, W.G., The role of matrix metalloproteinases in tumor invasion, metastasis, and angiogenesis. Surg Oncol Clin N Am, 2001. 10(2): p. 383-92.
    180. Xu, X., et al., Matrix metalloproteinase-2 contributes to cancer cell migration on collagen. Cancer Res, 2005. 65(1): p. 130-6.
    181. Shieh, J.M., et al., alpha-Tomatine suppresses invasion and migration of human non-small cell lung cancer NCI-H460 cells through inactivating FAK/PI3K/Akt signaling pathway and reducing binding activity of NF-kappaB. Cell Biochem Biophys, 2011. 60(3): p. 297-310.
    182. Park, J.H. and H.J. Han, Caveolin-1 plays important role in EGF-induced migration and proliferation of mouse embryonic stem cells: involvement of PI3K/Akt and ERK. Am J Physiol Cell Physiol, 2009. 297(4): p. C935-44.
    183. Krell, T., et al., Characterization of molecular interactions using isothermal titration calorimetry. Methods Mol Biol, 2014. 1149: p. 193-203.
    184. Wang, W., et al., Bimodal imprint chips for peptide screening: integration of high-throughput sequencing by MS and affinity analyses by surface plasmon resonance imaging. Anal Chem, 2014. 86(8): p. 3703-7.
    185. Mehta, R.R., et al., A cell penetrating peptide derived from azurin inhibits angiogenesis and tumor growth by inhibiting phosphorylation of VEGFR-2, FAK and Akt. Angiogenesis, 2011. 14(3): p. 355-69.
    186. Duncan, R., Polymer conjugates as anticancer nanomedicines. Nature Reviews Cancer, 2006. 6(9): p. 688-701.
    187. Liu, Y. and W. Lu, Recent advances in brain tumor-targeted nano-drug delivery systems. Expert Opin Drug Deliv, 2012. 9(6): p. 671-86.
    188. Wang, C., et al., RGD-conjugated silica-coated gold nanorods on the surface of carbon nanotubes for targeted photoacoustic imaging of gastric cancer. Nanoscale Res Lett, 2014. 9(1): p. 264.
    189. Yu, M.K., J. Park, and S. Jon, Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics, 2012. 2(1): p. 3-44.
    190. Wang, H., et al., Ocotillol Enhanced the Antitumor Activity of Doxorubicin via p53-Dependent Apoptosis. Evid Based Complement Alternat Med, 2013. 2013: p. 468537.
    191. Shahin, M., et al., Engineered breast tumor targeting peptide ligand modified liposomal doxorubicin and the effect of peptide density on anticancer activity. Biomaterials, 2013. 34(16): p. 4089-97.
    192. Kaiser, E., et al., Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem, 1970. 34(2): p. 595-8.
    193. Wang, R., et al., Application of poly(ethylene glycol)-distearoylphosphatidylethanolamine (PEG-DSPE) block copolymers and their derivatives as nanomaterials in drug delivery. Int J Nanomedicine, 2012. 7: p. 4185-98.
    194. Lu, R.M., et al., Single chain anti-c-Met antibody conjugated nanoparticles for in vivo tumor-targeted imaging and drug delivery. Biomaterials, 2011. 32(12): p. 3265-74.
    195. Vashist, S.K., E.M. Schneider, and J.H. Luong, Surface plasmon resonance-based immunoassay for human fetuin A. Analyst, 2014. 139(9): p. 2237-42.
    196. Chien-Jung Chen, K.-C.T., Ping-Hsueh Kuo, Pei-Lin Chang, Wen-Ching Wang, Yung-Jen Chuang, and M.D.-T. Chang, A Heparan Sulfate-Binding Cell Penetrating Peptide for Tumor Targeting and Migration Inhibition. BioMed Research International, 2014.
    197. Wang, Z., et al., The use of a tumor metastasis targeting peptide to deliver doxorubicin-containing liposomes to highly metastatic cancer. Biomaterials, 2012. 33(33): p. 8451-60.
    198. Tang, C., et al., Anticancer mechanism of peptide P18 in human leukemia K562 cells. Org Biomol Chem, 2010. 8(5): p. 984-7.
    199. Koren, E., et al., Cell-penetrating TAT peptide in drug delivery systems: proteolytic stability requirements. Drug Deliv, 2011. 18(5): p. 377-84.
    200. Futaki, S., et al., Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem, 2001. 276(8): p. 5836-40.
    201. Mallorqui-Fernandez, G., et al., Three-dimensional crystal structure of human eosinophil cationic protein (RNase 3) at 1.75 A resolution. J Mol Biol, 2000. 300(5): p. 1297-307.
    202. Domachowske, J.B., et al., Eosinophil cationic protein/RNase 3 is another RNase A-family ribonuclease with direct antiviral activity. Nucleic Acids Res, 1998. 26(14): p. 3358-63.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE