簡易檢索 / 詳目顯示

研究生: 周韋均
論文名稱: 利用基因網路研究不同表型子宮內膜癌之基因印記及應用在雙酚A之毒性評估
Gene-Network Analysis Reveals Gene Signatures for the Phenotypic Characteristics of Human Endometrial Cancer and Its Application in Bisphenol A Toxicity Evaluation
指導教授: 莊淳宇
口試委員: 黃憲達
鐘育志
張建文
許志楧
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2013
畢業學年度: 102
語文別: 英文
論文頁數: 114
中文關鍵詞: 基因網路子宮內膜癌
外文關鍵詞: Gene network, endometrial cancer
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 子宮內膜癌是常見的婦女惡性腫瘤,近年來發生率持續攀升。許多的研究者已針對子宮內膜癌化過程進行研究,發現了不同表型的基因印記。然而,目前尚未有利用基因網路分析(gene network analysis)的方式,進行子宮內膜惡性腫瘤的表型分類和癌化機制之探究。因此本研究匯整不同平台子宮內膜癌之基因晶片,將其整合為一個大尺度的基因資料庫,利用weighted gene co-expression network (WGCNA)及elastic-net regression model的整合性模式,重新建構子宮內膜癌之基因網路,並找出影響子宮內膜癌癌化過程的基因印記。根據本研究所匯整的基因表現資料,可以建構為一個由620個基因組成的基因網路,從中可以找出19個影響子宮內膜癌之惡性程度(stage)、表型(type)及分化(grade)癌化過程中cell-cycle regulation、antigen processing和citric acid cycle相關的基因印記。由這些基因印記所建構而成的預測模型,可以成功地對不同表型之子宮內膜癌進行分類。
    另外,本研究也應用了基因網路的分析方法,針對雙酚A (bisphenol A; BPA)的毒性測試進行研究。BPA是一種雌激素干擾物質,常用於塑膠物質及牙齒的塑化劑。本研究以基因網路的分析方法,將BPA改變子宮內膜細胞之基因表現的分子機制,具像化的呈現。
    本研究提供了一個鑑定子宮內膜基因印記的平台,能夠更了解子宮內膜癌化的過程,並可以有效的發現潛在治療藥物的標靶。另外在BPA毒性分析中,也可以針對環境暴露評估及人體健康效應,提供更有力的依據。


    Endometrial cancers (ECs) are the most common gynecologic malignancy. Many studies have investigated the tumorigenesis process and identified the biomarkers for signature classification. However, to the best of knowledge, there is no satisfactory gene network-based method on the investigation of tumorigenesis characterization and diagnosis of subtype of ECs. An integrative analysis of weighted gene co-expression network (WGCNA) and elastic-net regression model was used to reconstruct an ECs-specific gene co-expression network and to discover the cancer gene signatures driving tumorigenesis of ECs. This study reconstructed a co-expression network consisted of 620 genes, and discovered 19-gene diagnostic biomarker signatures for grade, type and stage in the EC-specific network contributing to the ECs progression via cell-cycle regulation, antigen processing and the citric acid (TCA) cycle. The predictive model achieved the good classifier performance for phenotypic characteristics of ECs.
    On the other hand, this study also applied the network-based analysis to a case study of bisphenol A (BPA) toxicity testing. BPA can play as an endocrine disrupting chemical and is usually used as sealants in plastic materials. The primary route of human exposure to BPA is food intake. This study presented the toxicity evaluation of BPA exposure in the visualized perturbations of molecular and cellular changes.
    This study provided a powerful biomarker discovery platform to better understand the progression of ECs to uncover potential therapeutic targets in the treatment of ECs, and the toxicity of environmental BPA exposure for health effect estimation and prevention.

    TABLOE OF CONTENTS 摘要 i ABSTRACT ii TABLOE OF CONTENTS iv LIST OF TABLES viii LIST OF FIGURES ix Chpater 1 Introduction 1 1.1 Endometrial cancers 3 1.1.1 Genomic Features of Endometrial Cancers 4 1.2 DNA Microarray Platforms 5 1.2.1 Affymetrix GeneChip oligonucleotide arrays 6 1.2.2 Illumina BeadArrays 6 1.2.3 Agilent Microarray 6 1.3 Pre-processing for Microarray 7 1.4 Meta-Analysis and Cross-Platforms Normalization of Microarray 8 1.5 Weighted Gene Co-Expression Network 9 1.6 Elastic-Net Analysis 10 1.7 Hub Genes 11 1.8 Organization of the thesis 11 Chpater 2 Preprocessing and Normalization of Microarray Data 16 2.1 Methods 16 2.1.1 Data Collection 16 2.1.2 Microarray Data Pre-Processing 17 2.1.3 Cross-platforms Normalization 19 2.2 Results 20 2.2.1 Pre-processing and Normalization for DNA Microarray 20 2.2.2 Cross-Platforms Normalization for DNA Microarray 21 2.2.3 Cross-Platforms Microarray Data Integration 21 2.3 Summary 22 Chpater 3 Exploration of Differentially Expressed Genes 34 3.1 Data Sets and Multiple Testing Procedures 34 3.2 Differentially Expressed Analysis 35 3.3 Nonspecific Filtering 36 3.4 Differential Expression 36 3.5 Gene Ontology Analysis 37 3.6 Summary 38 Chpater 4 Construction for Gene Co-expression Network 47 4.1 Methods of Construction for Gene Co-Expression Network 47 4.2 Reconstruction of Gene Co-Expression Network 48 4.3 Identification for Gene Module 49 4.4 Identification for Hub Genes 50 4.5 Gene Co-Expression Networks 52 4.6 Module Detection 53 4.7 Connection of Modules with Phenotypic Characteristics of Endometrial Cancer 53 4.8 Identification for Key Hub genes 54 4.9 Signaling Pathway Analysis 55 4.10 Summary 56 Chpater 5 Network-Based Predictive Model 69 5.1 Elastic Net Analysis 70 5.2 Penalized Logistic Regression Models via the Elastic Net 71 5.3 Receiver Operative Characteristics 72 5.4 Result of Elastic-Net Analysis 72 5.5 Network-Based Classifier Model 72 5.6 Summary 73 Chpater 6 Discussion 78 6.1 Hub Gene of Grade in ECs 79 6.2 Hub Gene of Type in ECs 80 6.3 Gene Signature of Stage in ECs 81 6.4 Pathway Analysis of Hub Gene Signature 83 6.5 Summary 84 Chpater 7 Computational Systems Biology and Dose-Response Modeling: A Case Study in BPA Toxicity Testing 85 7.1 Introduction 85 7.1.1 Bisphenol A (BPA) 86 7.1.2 Consensus Modules 87 7.1.3 Overview of Framework 87 7.2 Methods 88 7.2.1 Cell culture and BPA toxicity testing 88 7.2.2 Consensus Gene Network 89 7.2.3 Consensus networks detection 90 7.2.4 Dose-Response Curve 91 7.3 Results 92 7.3.1 Differential Gene Network Analysis of Endometrial Cells 92 7.3.2 Initial Gene Selection for Dose-Response Analysis 93 7.3.3 Dose-Dependent Dynamic Gene Networks 94 7.4 Discussions 94 Chpater 8 Conclusion 101 8.1 Summary of Contribution 101 8.2 Future Directions 104 Reference 106

    1. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA: a cancer journal for clinicians 63: 11-30.
    2. Cancer Genome Atlas Research N, Kandoth C, Schultz N, Cherniack AD, Akbani R, et al. (2013) Integrated genomic characterization of endometrial carcinoma. Nature 497: 67-73.
    3. Risinger JI, Maxwell GL, Chandramouli GV, Jazaeri A, Aprelikova O, et al. (2003) Microarray analysis reveals distinct gene expression profiles among different histologic types of endometrial cancer. Cancer Res 63: 6-11.
    4. Risinger JI, Allard J, Chandran U, Day R, Chandramouli GV, et al. (2013) Gene expression analysis of early stage endometrial cancers reveals unique transcripts associated with grade and histology but not depth of invasion. Frontiers in oncology 3: 139.
    5. Koul A, Bendahl PO, Borg A, Ferno M, Lidebring MF, et al. (2002) TP53 protein expression analysis by luminometric immunoassay in comparison with gene mutation status and prognostic factors in early stage endometrial cancer. Int. J. Gynecol. Cancer 12: 362-371.
    6. Shi Z, Li CY, Zhao S, Yu Y, An N, et al. (2013) A systems biology analysis of autophagy in cancer therapy. Cancer Lett 337: 149-160.
    7. Shi Z, Derow CK, Zhang B (2010) Co-expression module analysis reveals biological processes, genomic gain, and regulatory mechanisms associated with breast cancer progression. Bmc Syst Biol 4: 74.
    8. Madhamshettiwar PB, Maetschke SR, Davis MJ, Reverter A, Ragan MA (2012) Gene regulatory network inference: evaluation and application to ovarian cancer allows the prioritization of drug targets. Genome Med 4: 41.
    9. Horvath S, Zhang B, Carlson M, Lu KV, Zhu S, et al. (2006) Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc Natl Acad Sci U. S. A. 103: 17402-17407.
    10. Colombo N, Preti E, Landoni F, Carinelli S, Colombo A, et al. (2011) Endometrial cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 22 Suppl 6: vi35-39.
    11. Lax SF, Kurman RJ (1997) A dualistic model for endometrial carcinogenesis based on immunohistochemical and molecular genetic analyses. J Clin Pathol 81: 228-232.
    12. Lax SF, Kendall B, Tashiro H, Slebos RJC, Ellenson LH (2000) The frequency of p53, K-ras mutations, and microsatellite instability differs in uterine endometrioid and serous carcinoma - Evidence of distinct molecular genetic pathways. Cancer 88: 814-824.
    13. Bansal N, Yendluri V, Wenham RM (2009) The molecular biology of endometrial cancers and the implications for pathogenesis, classification, and targeted therapies. Cancer control : journal of the Moffitt Cancer Center 16: 8-13.
    14. Mutter GL, Lin MC, Fitzgerald JT, Kum JB, Baak JPA, et al. (2000) Altered PTEN expression as a diagnostic marker for the earliest endometrial precancers. J Natl Cancer I 92: 924-931.
    15. Ryan AJ, Susil B, Jobling TW, Oehler MK (2005) Endometrial cancer. Cell Tissue Res 322: 53-61.
    16. Enomoto T, Inoue M, Perantoni AO, Buzard GS, Miki H, et al. (1991) K-ras activation in premalignant and malignant epithelial lesions of the human uterus. Cancer research 51: 5308-5314.
    17. Risinger JI, Hayes AK, Berchuck A, Barrett JC (1997) PTEN/MMAC1 mutations in endometrial cancers. Cancer Res 57: 4736-4738.
    18. Odicino FE, Bignotti E, Rossi E, Pasinetti B, Tassi RA, et al. (2008) HER-2/neu overexpression and amplification in uterine serous papillary carcinoma: comparative analysis of immunohistochemistry, real-time reverse transcription-polymerase chain reaction, and fluorescence in situ hybridization. Int. J. Gynecol. Cancer 18: 14-21.
    19. Shalon D, Smith SJ, Brown PO (1996) A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res 6: 639-645.
    20. Patterson TA, Lobenhofer EK, Fulmer-Smentek SB, Collins PJ, Chu TM, et al. (2006) Performance comparison of one-color and two-color platforms within the MicroArray Quality Control (MAQC) project. Nat Biotechnol 24: 1140-1150.
    21. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, et al. (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31: e15.
    22. Gunderson KL, Kruglyak S, Graige MS, Garcia F, Kermani BG, et al. (2004) Decoding randomly ordered DNA arrays. Genome Res 14: 870-877.
    23. Kuhn K, Baker SC, Chudin E, Lieu MH, Oeser S, et al. (2004) A novel, high-performance random array platform for quantitative gene expression profiling. Genome Res 14: 2347-2356.
    24. Zahurak M, Parmigiani G, Yu W, Scharpf RB, Berman D, et al. (2007) Pre-processing Agilent microarray data. BMC Bioinformatics 8: 142.
    25. Aikaterini M, Evangelos D, Anastasios B (2007) Robust pre-processing and noise reduction in microarray images. Proceedings of the Fifth IASTED International Conference on Biomedical Engineering: 360-364.
    26. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, et al. (2003) Summaries of affymetrix GeneChip probe level data. Nucleic Acids Res 31.
    27. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19: 185-193.
    28. Lopez-Romero P, Gonzalez MA, Callejas S, Dopazo A, Irizarry RA (2010) Processing of Agilent microRNA array data. BMC research notes 3: 18.
    29. Parkinson H, Kapushesky M, Shojatalab M, Abeygunawardena N, Coulson R, et al. (2007) ArrayExpress - a public database of microarray experiments and gene expression profiles. Nucleic Acids Res 35: D747-D750.
    30. Barrett T, Edgar R (2006) Gene expression omnibus: Microarray data storage, submission, retrieval, and analysis. Method Enzymol 411: 352-369.
    31. Shabalin AA, Tjelmeland H, Fan C, Perou CM, Nobel AB (2008) Merging two gene-expression studies via cross-platform normalization. Bioinformatics 24: 1154-1160.
    32. Benito M, Parker J, Du Q, Wu JY, Xang D, et al. (2004) Adjustment of systematic microarray data biases. Bioinformatics 20: 105-114.
    33. Walker WL, Liao IH, Gilbert DL, Wong B, Pollard KS, et al. (2008) Empirical Bayes accomodation of batch-effects in microarray data using identical replicate reference samples: application to RNA expression profiling of blood from Duchenne muscular dystrophy patients. BMC genomics 9: 494.
    34. Parkinson H, Kapushesky M, Shojatalab M, Abeygunawardena N, Coulson R, et al. (2007) ArrayExpress--a public database of microarray experiments and gene expression profiles. Nucleic Acids Res 35: D747-750.
    35. Rudy J, Valafar F (2011) Empirical comparison of cross-platform normalization methods for gene expression data. BMC Bioinformatics 12.
    36. Miller JA, Horvath S, Geschwind DH (2010) Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways. Proc. Natl. Acad. Sci. U. S. A. 107: 12698-12703.
    37. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMCBioinformatics 9.
    38. Horvath S, Dong J (2008) Geometric Interpretation of Gene Coexpression Network Analysis. Plos Comput Biol 4.
    39. Shi ZA, Derow CK, Zhang B (2010) Co-expression module analysis reveals biological processes, genomic gain, and regulatory mechanisms associated with breast cancer progression. BMC Syst Biol 4.
    40. Ma SG, Huang Y, Huang J, Fang KN (2012) Gene network-based cancer prognosis analysis with sparse boosting. Genet Res 94: 205-221.
    41. Levine AJ, Miller JA, Shapshak P, Gelman B, Singer EJ, et al. (2013) Systems analysis of human brain gene expression: mechanisms for HIV-associated neurocognitive impairment and common pathways with Alzheimer's disease. BMC Med Genomics 6.
    42. Presson AP, Yoon NK, Bagryanova L, Mah V, Alavi M, et al. (2011) Protein expression based multimarker analysis of breast cancer samples. BMC Cancer 11: 230.
    43. Oldham MC, Horvath S, Geschwind DH (2006) Conservation and evolution of gene coexpression networks in human and chimpanzee brains. Proc Natl Acad Sci U. S. A. 103: 17973-17978.
    44. Oldham MC, Konopka G, Iwamoto K, Langfelder P, Kato T, et al. (2008) Functional organization of the transcriptome in human brain. Nat Neurosci 11: 1271-1282.
    45. Clarke C, Doolan P, Barron N, Meleady P, O'Sullivan F, et al. (2011) Large scale microarray profiling and coexpression network analysis of CHO cells identifies transcriptional modules associated with growth and productivity. J Biotechnol 155: 350-359.
    46. Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J Roy Stat Soc B Met 58: 267-288.
    47. Kim Y, Choi H, Oh HS (2008) Smoothly Clipped Absolute Deviation on High Dimensions. J Am Stat Assoc 103: 1665-1673.
    48. Engelmann JC, Spang R (2012) A Least Angle Regression Model for the Prediction of Canonical and Non-Canonical miRNA-mRNA Interactions. Plos One 7.
    49. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J Roy Stat Soc B 67: 301-320.
    50. Cho S, Kim H, Oh S, Kim K, Park T (2009) Elastic-net regularization approaches for genome-wide association studies of rheumatoid arthritis. BMC proceedings 3 Suppl 7: S25.
    51. Lehner B, Crombie C, Tischler J, Fortunato A, Fraser AG (2006) Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nat Genet 38: 896-903.
    52. Tong AH, Lesage G, Bader GD, Ding H, Xu H, et al. (2004) Global mapping of the yeast genetic interaction network. Science 303: 808-813.
    53. Zhao R, Davey M, Hsu YC, Kaplanek P, Tong A, et al. (2005) Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120: 715-727.
    54. Lehner B (2007) Modelling genotype-phenotype relationships and human disease with genetic interaction networks. J Exp Biol 210: 1559-1566.
    55. Shabalin AA, Tjelmeland H, Fan C, Perou CM, Nobel AB (2008) Merging two gene-expression studies via cross-platform normalization. Bioinformatics 24: 1154-1160.
    56. Huber W, von Heydebreck A, Sueltmann H, Poustka A, Vingron M (2003) Parameter estimation for the calibration and variance stabilization of microarray data. Stat Appl Genet Mol Biol 2: Article3.
    57. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19: 185-193.
    58. Day RS, McDade KK, Chandran UR, Lisovich A, Conrads TP, et al. (2011) Identifier mapping performance for integrating transcriptomics and proteomics experimental results. Bmc Bioinformatics 12: 213.
    59. Burney RO, Talbi S, Hamilton AE, Vo KC, Nyegaard M, et al. (2007) Gene expression analysis of endometrium reveals progesterone resistance and candidate susceptibility genes in women with endometriosis. Endocrinology 148: 3814-3826.
    60. Mannelqvist M, Stefansson IM, Wik E, Kusonmano K, Raeder MB, et al. (2012) Lipocalin 2 expression is associated with aggressive features of endometrial cancer. BMC Cancer 12.
    61. Montserrat N, Mozos A, Llobet D, Dolcet X, Pons C, et al. (2012) Epithelial to mesenchymal transition in early stage endometrioid endometrial carcinoma. Hum. Pathol. 43: 632-643.
    62. Hawkins SM, Creighton CJ, Han DY, Zariff A, Anderson ML, et al. (2011) Functional MicroRNA Involved in Endometriosis. Mol Endocrinol 25: 821-832.
    63. Mhawech-Fauceglia P, Wang D, Kesterson J, Clark K, Monhollen L, et al. (2010) Microarray Analysis Reveals Distinct Gene Expression Profiles Among Different Tumor Histology, Stage and Disease Outcomes in Endometrial Adenocarcinoma. Plos One 5.
    64. Levan K, Partheen K, Osterberg L, Olsson B, Delle U, et al. (2010) Identification of a Gene Expression Signature for Survival Prediction in Type I Endometrial Carcinoma. Gene Expr. 14: 361-370.
    65. Eustace A, Mani N, Span PN, Irlam JJ, Taylor J, et al. (2013) A 26-gene hypoxia signature predicts benefit from hypoxia-modifying therapy in laryngeal cancer but not bladder cancer. Clin Cancer Res 10.1158/1078-0432.CCR-13-0542.
    66. Yan Z, Xu W, Xiong Y, Cheng Y, Xu H, et al. (2013) Highly accurate two-gene signature for gastric cancer. Med Oncol 30: 584.
    67. Shen J, Wei J, Wang H, Yue G, Yu L, et al. (2013) A three-gene signature as potential predictive biomarker for irinotecan sensitivity in gastric cancer. J Transl Med 11: 73.
    68. Kok M, Koornstra RH, Mook S, Hauptmann M, Fles R, et al. (2012) Additional value of the 70-gene signature and levels of ER and PR for the prediction of outcome in tamoxifen-treated ER-positive breast cancer. Breast 21: 769-778.
    69. Diboun I, Wernisch L, Orengo CA, Koltzenburg M (2006) Microarray analysis after RNA amplification can detect pronounced differences in gene expression using limma. BMC genomics 7: 252.
    70. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. U. S. A. 100: 9440-9445.
    71. Huang da W, Sherman BT, Tan Q, Kir J, Liu D, et al. (2007) DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 35: W169-175.
    72. Nutt JE, Durkan GC, Mellon JK, Lunec J (2003) Matrix metalloproteinases (MMPs) in bladder cancer: the induction of MMP9 by epidermal growth factor and its detection in urine. BJU international 91: 99-104.
    73. Bakkar AA, Wallerand H, Radvanyi F, Lahaye JB, Pissard S, et al. (2003) FGFR3 and TP53 gene mutations define two distinct pathways in urothelial cell carcinoma of the bladder. Cancer Res 63: 8108-8112.
    74. Acconcia F, Barnes CJ, Kumar R (2006) Estrogen and tamoxifen induce cytoskeletal remodeling and migration in endometrial cancer cells. Endocrinology 147: 1203-1212.
    75. Maelan AE, Rasmussen TK, Larsson LI (2007) Localization of thymosin beta10 in breast cancer cells: relationship to actin cytoskeletal remodeling and cell motility. Histochem. Cell Biol. 127: 109-113.
    76. Laubenbacher R, Hower V, Jarrah A, Torti SV, Shulaev V, et al. (2009) A systems biology view of cancer. Biochim. Biophys. Acta-Rev Cancer 1796: 129-139.
    77. Chowdhury SA, Nibbe RK, Chance MR, Koyuturk M (2011) Subnetwork state functions define dysregulated subnetworks in cancer. J Comput Biol 18: 263-281.
    78. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9: 559.
    79. Horvath S, Dong J (2008) Geometric interpretation of gene coexpression network analysis. Plos Comput Biol 4: e1000117.
    80. Ma S, Huang Y, Huang J, Fang K (2012) Gene network-based cancer prognosis analysis with sparse boosting. Genet Res (Camb) 94: 205-221.
    81. Levine AJ, Miller JA, Shapshak P, Gelman B, Singer EJ, et al. (2013) Systems analysis of human brain gene expression: mechanisms for HIV-associated neurocognitive impairment and common pathways with Alzheimer's disease. BMC Med Genomics 6: 4.
    82. Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4: Article17.
    83. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297: 1551-1555.
    84. Li A, Horvath S (2007) Network neighborhood analysis with the multi-node topological overlap measure. Bioinformatics 23: 222-231.
    85. Yip AM, Horvath S (2007) Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinformatics 8: 22.
    86. Horvath S, Zhang B, Carlson M, Lu KV, Zhu S, et al. (2006) Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc Natl Acad Sci U. S. A. 103: 17402-17407.
    87. Carter SL, Brechbuhler CM, Griffin M, Bond AT (2004) Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics 20: 2242-2250.
    88. Gerlee P, Lundh T, Zhang B, Anderson AR (2009) Gene divergence and pathway duplication in the metabolic network of yeast and digital organisms. J R Soc Interface 6: 1233-1245.
    89. Albert R, Barabasi AL (2000) Topology of evolving networks: local events and universality. Phys Rev Lett 85: 5234-5237.
    90. Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF, et al. (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430: 88-93.
    91. Nuyten DS, van de Vijver MJ (2008) Using microarray analysis as a prognostic and predictive tool in oncology: focus on breast cancer and normal tissue toxicity. Semin Radiat Oncol 18: 105-114.
    92. Director's Challenge Consortium for the Molecular Classification of Lung A, Shedden K, Taylor JM, Enkemann SA, Tsao MS, et al. (2008) Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med 14: 822-827.
    93. Harrell FE, Jr., Lee KL, Mark DB (1996) Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15: 361-387.
    94. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net (vol B 67, pg 301, 2005). J Roy Stat Soc B 67: 768-768.
    95. Yoshihara K, Tsunoda T, Shigemizu D, Fujiwara H, Hatae M, et al. (2012) High-Risk Ovarian Cancer Based on 126-Gene Expression Signature Is Uniquely Characterized by Downregulation of Antigen Presentation Pathway. Clin Cancer Res 18: 1374-1385.
    96. Gao FM, Ponte JF, Levy M, Papageorgis P, Cook NM, et al. (2009) hBub1 negatively regulates p53 mediated early cell death upon mitotic checkpoint activation. Cancer Biol Ther 8: 636-644.
    97. Glinsky GV, Berezovska O, Glinskii AB (2005) Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest 115: 1503-1521.
    98. Fu JY, Bian ML, Jiang Q, Zhang CM (2007) Roles of aurora kinases in mitosis and tumorigenesis. Molecular Cancer Res. 5: 1-10.
    99. Ricke RM, Jeganathan KB, van Deursen JM (2011) Bub1 overexpression induces aneuploidy and tumor formation through Aurora B kinase hyperactivation. J. Cell Biol. 193: 1049-1064.
    100. Oda K, Stokoe D, Taketani Y, McCormick F (2005) High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma. Cancer Res 65: 10669-10673.
    101. Semczuk A, Jakowicki JA (2004) Alterations of pRb1-cyclin D1-cdk4/6-p16(INK4A) pathway in endometrial carcinogenesis. Cancer Lett 203: 1-12.
    102. Wu Z, Cho H, Hampton GM, Theodorescu D (2009) Cdc6 and Cyclin E2 Are PTEN-Regulated Genes Associated with Human Prostate Cancer Metastasis. Neoplasia 11: 66-76.
    103. den Hollander J, Rimpi S, Doherty JR, Rudelius M, Buck A, et al. (2010) Aurora kinases A and B are up-regulated by Myc and are essential for maintenance of the malignant state. Blood 116: 1498-1505.
    104. Yoshimi A, Goyama S, Watanabe-Okochi N, Yoshiki Y, Nannya Y, et al. (2011) Evi1 represses PTEN expression and activates PI3K/AKT/mTOR via interactions with polycomb proteins. Blood 117: 3617-3628.
    105. Gasnereau I, Boissan M, Margall-Ducos G, Couchy G, Wendum D, et al. (2012) KIF20A mRNA and Its Product MKlp2 Are Increased During Hepatocyte Proliferation and Hepatocarcinogenesis. Am J Pathol 180: 131-140.
    106. Margolis RL (2004) Bub1, a gatekeeper for Cdc20-dependent mitotic exit. Dev Cell 7: 634-635.
    107. Peters JM (2002) The anaphase-promoting complex: Proteolysis in mitosis and beyond. Mol Cell 9: 931-943.
    108. Yuan BB, Xu Y, Woo JH, Wang YY, Bae YK, et al. (2006) Increased expression of mitotic checkpoint genes in breast cancer cells with chromosomal instability. Clin Cancer Res 12: 405-410.
    109. Dai HY, van't Veer L, Lamb J, He YD, Mao M, et al. (2005) A cell proliferation signature is a marker of extremely poor outcome in a subpopulation of breast cancer patients. Cancer Res. 65: 4059-4066.
    110. Perez de Castro I, de Carcer G, Malumbres M (2007) A census of mitotic cancer genes: new insights into tumor cell biology and cancer therapy. Carcinogenesis 28: 899-912.
    111. Morse MA, Secord AA, Blackwell K, Hobeika AC, Sinnathamby G, et al. (2011) MHC Class I-Presented Tumor Antigens Identified in Ovarian Cancer by Immunoproteomic Analysis Are Targets for T-Cell Responses against Breast and Ovarian Cancer. Clin Cancer Res 17: 3408-3419.
    112. Bijen CBM, Bantema-Loppe EJ, de Jong RA, Leffers N, Mourits MJE, et al. (2010) The prognostic role of classical and nonclassical MHC class I expression in endometrial cancer. Int. J. Cancer 126: 1417-1427.
    113. Chen JQ, Russo J (2012) Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells. Bba-Rev Cancer 1826: 370-384.
    114. Raimundo N, Baysal BE, Shadel GS (2011) Revisiting the TCA cycle: signaling to tumor formation. Trends Mol Med 17: 641-649.
    115. Sato M, Sekido Y, Horio Y, Takahashi M, Saito H, et al. (2000) Infrequent mutation of the hBUB1 and hBUBR1 genes in human lung cancer. Japanese Journal of Cancer Res. 91: 504-509.
    116. McGovern SL, Qi Y, Pusztai L, Symmans WF, Buchholz TA (2012) Centromere protein-A, an essential centromere protein, is a prognostic marker for relapse in estrogen receptor-positive breast cancer. Breast Cancer Res 14.
    117. Tomita Y, Akira Y, Tsukamoto H, Senju S, Kuroda Y, et al. (2013) Identification of promiscuous KIF20A long peptides bearing both CD4+ and CD8+ T-cell epitopes: KIF20A-specific CD4+ T-cell immunity in patients with malignant tumor. Clin Cancer Res 10.1158/1078-0432.CCR-13-0197.
    118. Waddell WJ (2010) Commentary on "Toxicity Testing in the 21st Century: A vision and a Strategy". Hum Exp Toxicol 29: 31-32.
    119. Calafat AM, Kuklenyik Z, Reidy JA, Caudill SP, Ekong J, et al. (2005) Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population. Environ. Health Perspect. 113: 391-395.
    120. Kang JH, Kondo F, Katayama Y (2006) Human exposure to bisphenol A. Toxicology 226: 79-89.
    121. Richter CA, Birnbaum LS, Farabollini F, Newbold RR, Rubin BS, et al. (2007) In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol 24: 199-224.
    122. Takahashi O, Oishi S (2000) Disposition of orally administered 2,2-bis(4-hydroxyphenyl)propane (bisphenol A) in pregnant rats and the placental transfer to fetuses. Environ. Health Perspect. 108: 931-935.
    123. Ikezuki Y, Tsutsumi O, Takai Y, Kamei Y, Taketani Y (2002) Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Hum Reprod 17: 2839-2841.
    124. Schonfelder G, Flick B, Mayr E, Talsness C, Paul M, et al. (2002) In utero exposure to low doses of Bisphenol A lead to long-term deleterious effects in the vagina. Neoplasia 4: 98-102.
    125. Balakrishnan B, Henare K, Thorstensen EB, Ponnampalam AP, Mitchell MD (2010) Transfer of bisphenol A across the human placenta. Am J Obstet Gynecol 202.
    126. Chou WC, Chen JL, Lin CF, Chen YC, Shih FC, et al. (2011) Biomonitoring of bisphenol A concentrations in maternal and umbilical cord blood in regard to birth outcomes and adipokine expression: a birth cohort study in Taiwan. Environ. Health 10: 94.
    127. Doherty LF, Bromer JG, Zhou Y, Aldad TS, Taylor HS (2010) In utero exposure to diethylstilbestrol (DES) or bisphenol-A (BPA) increases EZH2 expression in the mammary gland: an epigenetic mechanism linking endocrine disruptors to breast cancer. Hormones & cancer 1: 146-155.
    128. Zhu H, Xiao X, Zheng J, Zheng S, Dong K, et al. (2009) Growth-promoting effect of bisphenol A on neuroblastoma in vitro and in vivo. J. Pediatr. Surg. 44: 672-680.
    129. Timms BG, Howdeshell KL, Barton L, Bradley S, Richter CA, et al. (2005) Estrogenic chemicals in plastic and oral contraceptives disrupt development of the fetal mouse prostate and urethra. Proc Natl Acad Sci U. S. A. 102: 7014-7019.
    130. Langfelder P, Horvath S (2007) Eigengene networks for studying the relationships between co-expression modules. BMC Syst Biol 1.
    131. Faessel HM, Slocum HK, Rustum YM, Greco WR (2003) Thymidine and hypoxanthine protection patterns of the folic acid-enhanced synergies for combinations of trimetrexate plus a polyglutamylatable inhibitor of purine or thymidylate synthesis against human ileocecal HCT-8 cells. Int J Oncol 23: 401-409.
    132. Benjamini Y, Hochberg Y (1995) Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing. J Roy Stat Soc B Met 57: 289-300.
    133. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29: 1165-1188.
    134. Guo RY, Sakamoto H, Sugiura S, Ogawa M (2007) Endothelial cell motility is compatible with junctional integrity. J Cell Physiol 211: 327-335.
    135. Salian S, Doshi T, Vanage G (2009) Neonatal exposure of male rats to Bisphenol A impairs fertility and expression of sertoli cell junctional proteins in the testis. Toxicology 265: 56-67.
    136. Crider KS, Yang TP, Berry RJ, Bailey LB (2012) Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate's role. Adv. Nutr. 3: 21-38.
    137. Yang XN, Bentink S, Spang R (2005) Detecting common gene expression patterns in multiple cancer outcome entities. Biomed Microdevices 7: 247-251.
    138. Rhodes DR, Yu JJ, Shanker K, Deshpande N, Varambally R, et al. (2004) Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc. Natl. Acad. Sci. U. S. A. 101: 9309-9314.
    139. Segal E, Friedman N, Koller D, Regev A (2004) A module map showing conditional activity of expression modules in cancer. Nat Genet 36: 1090-1098.
    140. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U. S. A. 95: 14863-14868.
    141. Ideker T, Ozier O, Schwikowski B, Siegel AF (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18 Suppl 1: S233-240.
    142. Huang Y, Li H, Hu H, Yan X, Waterman MS, et al. (2007) Systematic discovery of functional modules and context-specific functional annotation of human genome. Bioinformatics 23: i222-229.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE