簡易檢索 / 詳目顯示

研究生: 徐若涵
論文名稱: 游標尺式之懸浮閘極電晶體應用於梳狀致動器之位移感測
A vernier-type displacement sensing mechanism using suspended gate FET for comb-drive actuators
指導教授: 陳榮順
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 53
中文關鍵詞: 電晶體懸浮閘極梳狀致動器
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出游標尺式懸浮閘極場效應電晶體之位移量感測器,並且整合於微機電系統之中,用於提供靜電式梳狀致動器之位置迴授訊號,其優點為感測的架構單純、高解析度,以及數位式的感測方式,不但省去了後端再由類比轉數位的複雜電路,也節省了處理時間。
    懸浮式閘極電晶體的操作原理,乃是透過輸出之汲極電流而感測懸浮閘極之位移量。本研究呈現游標尺式懸浮閘極電晶體的設計與分析,並闡述其操作原理與特性。另外,為了驗證系統整合的可能性,本研究亦設計一組靜電式梳狀致動器,並對其靜態與動態特性皆以數值模擬軟體進行驗證。
    本研究的製程規劃以兩片晶片分別完成,再用XYZ平台加以組合。預計未來的工作,將平台架設好,並予以量測,最後期望量測結果能和模擬所得到的結果加以比較分析並做探討。


    摘要 I 致謝 II 目錄 III 圖表目錄 V 第一章 緒論 1 1.1研究背景與動機 1 1.2文獻回顧 2 1.3論文架構 6 第二章 游標尺式懸浮式閘極電晶體之結構設計與理論分析 7 2.1金氧半電晶體結構及操作原理 7 2.2懸浮式閘極電晶體結構與其特性探討 11 2.3 游標尺之原理 17 2.4游標尺式懸浮式閘極電晶體之結構設計 19 2.5游標尺懸浮式閘極電晶體與梳狀致動器之整合 21 第三章 模擬結果與製程簡介 26 3.1利用ISE-TCAD模擬懸浮式閘極電晶體的特性 26 3.2 非理想情況模擬 33 第四章 製程流程與量測結果 38 4.1 Actuator chip的製程步驟 38 4.2 FET chip的製程步驟 39 4.3製程結果討論 42 4.3系統量測架構 44 第五章 結論與未來工作 48 5.1 結論 48 5.2 未來工作 49

    [1] W. C. Tang, T. H. Nguyen, and R. T. Howe, “Laterally driven
    polysilicon resonant microstructures,” Sensors and Actuators, A:
    Physical, vol. 20, pp. 25-32, 1989.

    [2] T. Harness and R. R. A. Syms, “Characteristic modes of electrostatic
    comb-drive X-Y microactuators,” Journal of Micromechanics and
    Microengineering, vol. 10, pp. 7-14, 2000.

    [3] C. Marxer, P. Griss, and N. F. de Rooij, “Variable optical attenuator
    based on silicon micromechanics,” IEEE Photonics Technology
    Letters, vol. 11, pp. 233-235, 1999.

    [4] W. H. Juan and S. W. Pang, “High-aspect-ratio Si vertical
    micromirror arrays for optical switching,” Journal of
    Microelectromechanical Systems, vol. 7, pp. 207-213, 1998.

    [5] M. A. Haque, M. T. A. Saif, “Microscale materials testing using
    MEMS actuators,” Journal of Microelectromechanical Systems, vol.
    10, pp. 146-152, 2001.

    [6] P. Cheung, R. Horowitz, and R. T. Howe, “Identification, position
    sensing, and control of an electrostatically-driven polysilicon
    microactuator,” Proceedings of the IEEE Conference on Decision and
    Control, vol. 4, pp. 3545-3550, 1995.

    [7] Y. Sun, D. Piyabongkarn, A. Sezen, B. J. Nelson, and R. Rajamani,
    “A high-aspect-ratio two-axis electrostatic microactuator with
    extended travel range,” Sensors and Actuators, A: Physical, vol.
    102, pp. 49-60, 2002.

    [8] A. A. Kuijpers, R. J. Wiegerink, G. J. M. Krijnen, T. S. J. Lammerink,
    and M. Elwenspoek, “Capacitive long-range position sensor for
    microactuators,” Proceedings of the IEEE International Conference
    on Micro Electro Mechanical Systems, pp. 544-547, 2004.

    [9] B. Borovic, C. Hong, A. Q. Liu, L. Xie, and F. L. Lewis, “Control of a
    MEMS optical switch,” Proceedings of the IEEE Conference on
    Decision and Control, pp. 3039-3044, 2004.

    [10] L. Wang, J. M. Dawson, L. A. Hornak, P. Famouri, and R.
    Ghaffarian, “Real-time translational control of a MEMS comb
    resonator,” IEEE Transactions on Aerospace and Electronic Systems,
    vol. 40, pp. 567-575, 2004.

    [11] I. H. Song and P. K. Ajmera, “Differential laterally movable gate
    FETs (LMGFETs) as a position sensor,” Proceedings of SPIE - the
    International Society for Optical Engineering, vol. 5389, pp.
    267-273, 2004.

    [12] H. Toshiyoshi, M. Goto, M. Mita, H. Fujita, D. Kobayashi, G.
    Hashiguchi, J. Endo, and Y. Wada, “Fabrication of micromechanical
    tunneling probes and actuators on a silicon chip,” Japanese Journal of Applied Physics, vol. 38, pp 7185-7189, 1999.

    [13] R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive
    actuators for large displacements,” Journal of Micromechanics and
    Microengineering, vol. 6, pp. 320-329, 1996.

    [14] J. D. Grade, H. Jermanl, and T. W. Kenny, ”Design of large deflection electrostatic actuators,” Journal of Microelectromechanical Systems, vol. 12, pp. 335-343, 2003.

    [15] G. Zhou and P. Guangya, “Tilted folded-beam suspension for
    extending the stable travel range of comb-drive actuators,” Journal of
    Micromechanics and Microengineering, vol. 13, pp. 178-183, 2003.

    [16] H. C. Nathanson, W. E. Newell, R. A. Wickstrom, and J. R. Jr. Davis,
    “The resonant gate transistor,” IEEE Transactions on Electron
    Devices, vol. 14, pp. 117-133, 1967.

    [17] A.Yoshikawa and T. Suzuki, “Properties ofmovable-gate-field
    -effect structure as an electromechanical sensor,” Journal of
    Acoustical Society of America, vol. 64, pp. 725-730, 1978.

    [18] J. T. Suminto and W. H. Ko, “Pressure-sensitive insulated gate
    field-effect transistor (PSIGFET),” Sensors and Actuators, A:
    Physical, vol. 21, pp. 126-132, 1990.

    [19] R. S. Jachowicz and Z. M. Azgin, “FET pressure sensor and iterative
    method for modelling of the device,” Sensors and Actuators, A:
    Physical, vol. 97-98, pp. 369-378, 2002.

    [20] E. Hynes, M. O'Neill, D. McAuliffe, H. Berney, W. A. Lane, G.
    Kelly, M. Hill, “Development and characterization of a surface
    micromachined FET pressure sensor on a CMOS process,” Sensors
    and Actuators, A: Physical, vol. 76, pp. 283-292, 1999.

    [21] M. Fernandez-Bolanos, N. Abele, V. Pott, D. Bouvet, G-A. Racine, J.
    M. Quero, A. M. Ionescu, “Polyimide sacrificial layer for SOI
    SG-MOSFET pressure sensor,” Microelectronic Engineering, vol.
    83, pp. 1185-1188, 2006.

    [22] C. Steinbrüchel, “The mechanical field effect transistor: A new force sensor,” The Journal of Vacuum Science and Technology A, vol. 7, pp. 847-849, 1989.

    [23] J. A. Plaza, M. A. Benitez, J. Esteve, and E. L. Tamayo, “New FET
    accelerometer based on surface micromachining,” Sensors and
    Actuators, A: Physical, vol. 61, pp. 342-345, 1997.

    [24] Y. Yee, J. U. Bu, K. Chun, and J. W. Lee, “An integrated digital
    silicon micro-accelerometer with MOSFET-type sensing elements,”
    Journal of Micromechanics and Microengineering, vol. 10, pp.
    350-358, 2000.

    [25] P. K. Ajmera, I. H. Song, “Laterally movable gate FET (LMGFET)
    for on-chip integration of MEMS with electronics,” Proceedings of
    SPIE - the International Society for Optical Engineering, vol. 4334,
    pp. 30-37, 2001.

    [26] W. Olthuis, “Chemical and physical FET-based sensors or variations
    on an equation,” Sensors and Actuators, B: Chemical, vol.105, pp.
    96-103, 2005.

    [27] I. Eisele and M. Burgmair, “Work function based field effect devices
    for gas sensing,” Proceedings of the Conference on Optoelectronic
    and Microelectronic Materials and Devices, pp. 285-291, 2000.

    [28] T. Hirano, T. Furuhata, and K. J. Gabriel, “Design, Fabrication, and Operation of Submicron Gap Comb Drive Microactuator,” Journal of Microelectromechanical System, vol. 1, pp. 52-59, 1992.

    [29] R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb
    Drive Actuators for Large Displacement, ” Journal of
    Micromechanics and Microengineering, vol. 6, pp. 320-329, 1996.

    [30] H. Xie, Y. Pan, and G. K. Fedder, “A CMOS-MEMS mirror with
    curled-hinge comb drives,” Journal of Microelectromechanical
    Systems, vol. 12, pp. 450-457, 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE