簡易檢索 / 詳目顯示

研究生: 劉奕宏
Liu, Yi-Hong
論文名稱: 致癌蛋白MCT-1調控三陰性乳癌細胞之微小核糖核酸表現
Oncoprotein MCT-1 regulates microRNAs expression in triple negative breast cancer cells.
指導教授: 徐欣伶
Hsu, Hsin-Ling
楊嘉鈴
Jia-Ling Yang
口試委員: 王慧菁
Hui-Ching Wang
李岳倫
Yueh-Luen Lee
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 78
中文關鍵詞: 三陰性乳癌細胞微小核糖核酸表現
外文關鍵詞: MCT-1
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • MCT-1 (Multiple copies in T-cell malignancy 1) 最先被發現於淋巴癌細胞株,MCT-1是一種核醣核酸結合蛋白能夠和DENR互相交互作用在訊息核醣核酸的5 '端,經過我們研究也發現MCT-1在人類肺腺癌以及乳腺癌細胞中有過度表現的情況。MCT-1主要的的功能包括參與細胞增生、細胞存活和造成基因體的不穩定。近期研究指出,MCT-1蛋白能夠調控目標蛋白質的轉譯效率,我們推測MCT-1可能會經由影響微小核醣核酸的表現量達到調控特定訊息核醣核酸的穩定性。本論文主要探討的研究主題在MCT-1蛋白在調控微小核醣核酸過程中所扮演的角色。我們發現在三陰性乳癌細胞中抑制MCT-1蛋白的表現,能夠顯著抑制異植腫瘤生長及致癌性微小核醣核酸的表現量,另一方面過度表現MCT-1蛋白會顯著抑制抗癌性微小核醣核酸的含量。此外,在這些乳癌細胞中降低MCT-1的含量會導致誘導性核醣核酸靜默複合體中主要負責攜帶微小核醣核酸以及具有內切性核醣核酸水解酶活性的蛋白-Argonaute 2 (Ago2) 表現量下降,有可能是MCT-1會影響微小核醣核酸含量的主要原因之一。近年來的文獻指出,在缺氧的環境中EGFR的表現量會增加並進入細胞質中和Ago2 共同影響部分微小核醣核酸的成熟過程,而我研究發現MCT-1的表現量會同時影響EGFR和Ago2之間直接交互作用的強度,由此推測MCT-1能夠抑制抗癌性微小核醣核酸的表現可能是經由影響EGFR-Ago2 (誘導性核醣核酸靜默複合體) 複合體的穩定程度所致,達到抑制致癌性微小核醣核酸表現的癌細胞,明顯的抑制細胞遷移能力及侵入能力。基於上述致癌蛋白MCT-1能夠影響目標基因的轉譯效率可能經由調控微小核醣核酸的表現或是影響其分子穩定性。目前我正在深入探討其作用機轉及重要相關訊息途徑。


    The oncoprotein MCT-1 (Multiple copies in T-cell malignancies) was firstly identified in a human lymphoma cell line. MCT-1 is a RNA binding protein that is able to interact with DENR at 5 ' cap mRNA. Our researchs have discovered that MCT-1 is also overexpressed in both human lung and breast carcinomas. Overexpression MCT-1 plays multiple cellular functions such as cell survival, mitotic regulation, cell proliferation, genomic instability, tumor growth and translation regulation. Recent studies indicate that MCT-1 can regulate gene transcription and protein translation of the tumor suppressors and the oncogenic kinases, suggesting that MCT-1 may influence the stability of certain messenger RNA through modulating the biosynthesis of key microRNAs. Therefore, my main project is study: 1) Whether MCT-1 deregulates microRNAs expression in the tumor and the cancer cells? 2) Whether knockdown of MCT-1 decreases the oncomicroRNA expression level but increased the tumor suppressor microRNA presention? 3) Whether overexpression of MCT-1 can upregulate the oncomicroRNA but downregulate the tumor suppressor microRNA? 4) Is it possible that reduced MCT-1 activity can decrease one of RISC (RNA induced silencing complex) components Argonaute 2 (Ago2) that lead to downregulate the microRNAs and Ago2 endo-nuclease activity? The conclusion is that MCT-1 influences the expression levels of certain microRNAs in both TNBC cells and TNBC xenograft tumor. Because of increased activation of EGFR can interact with Ago2 and induce its phosphorylation that influences the maturation procedure of microRNAs in hypoxia condition. Similarly, I discovered that MCT-1 status can influence the activity of EGFR and the association between EGFR and Ago2, thus depleting MCT-1 inhibits the oncomicroRNA expression but elevates the tumor-suppressor microRNA presentation, probablely acting through its disruption on the formation of EGFR-Ago2 (RISC) complex. In summary, MCT-1 oncoprotein deregulates the transcription of specific genes persumbably through modulating the microRNA biosysthesis or by alterating their stabilities. The molecular mechanism and the potential of anti-metastaticity via controlling the maturation of miRNAs upon targeting the MCT-1 oncogenicity will be further investigated.

    誌謝……………………………………………………………………………………i 中文摘要………………………………………………………………………………1 英文摘要………………………………………………………………………………3 中英對照表……………………………………………………………………………6 壹、緒論 8 一、致癌蛋白MCT-1 8 二、微小核醣核酸(MicroRNA) 11 三、誘導性核醣核酸靜默複合體及微小核醣核酸生合成路線 16 貳、材料與方法 18 一、 細胞株與細胞培養相關實驗藥劑與耗材 18 二、 細胞培養 22 三、 西方墨點法 22 四、 細胞轉染實驗 24 五、 RNA萃取以及即時定量聚合連鎖反應(Q- PCR) 25 六、 免疫沉澱法 26 七、 共同免疫沉澱法 28 叄、實驗結果 30 一、MCT-1 蛋白調控微小核醣核酸的表現 30 二、MCT-1的表現能夠影響Ago2-EGFR 之間的交互作用 34 三、抑制MCT-1導致microRNA-21表現量下降且降低細胞入侵的能力 37 肆、討論 39 伍、參考文獻…………………………………………………………………………49 陸、圖片………………………………………………………………………………60 柒、表格………………………………………………………………………………76

    Adams, B.D., Claffey, K.P., and White, B.A. (2009). Argonaute-2 expression is regulated by epidermal growth factor receptor and mitogen-activated protein kinase signaling and correlates with a transformed phenotype in breast cancer cells. Endocrinology 150, 14-23.
    Akhavantabasi, S., Sapmaz, A., Tuna, S., and Erson-Bensan, A.E. (2012). miR-125b targets ARID3B in breast cancer cells. Cell structure and function 37, 27-38.
    Alexander, C.M., Hansell, E.J., Behrendtsen, O., Flannery, M.L., Kishnani, N.S., Hawkes, S.P., and Werb, Z. (1996). Expression and function of matrix metalloproteinases and their inhibitors at the maternal-embryonic boundary during mouse embryo implantation. Development 122, 1723-1736.
    Ambros, V. (2003). MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 113, 673-676.
    Anderson, P., and Kedersha, N. (2006). RNA granules. The Journal of cell biology 172, 803-808.
    Asangani, I.A., Rasheed, S.A., Nikolova, D.A., Leupold, J.H., Colburn, N.H., Post, S., and Allgayer, H. (2008). MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27, 2128-2136.
    Blenkiron, C., Goldstein, L.D., Thorne, N.P., Spiteri, I., Chin, S.F., Dunning, M.J., Barbosa-Morais, N.L., Teschendorff, A.E., Green, A.R., Ellis, I.O., et al. (2007). MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome biology 8, R214.
    Bushati, N., and Cohen, S.M. (2007). microRNA functions. Annual review of cell and developmental biology 23, 175-205.
    Cai, Q., Shu, X.O., Wen, W., Cheng, J.R., Dai, Q., Gao, Y.T., and Zheng, W. (2004). Genetic polymorphism in the manganese superoxide dismutase gene, antioxidant intake, and breast cancer risk: results from the Shanghai Breast Cancer Study. Breast cancer research : BCR 6, R647-655.
    Chan, J.A., Krichevsky, A.M., and Kosik, K.S. (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer research 65, 6029-6033.
    Chang, T.C., and Mendell, J.T. (2007). microRNAs in vertebrate physiology and human disease. Annual review of genomics and human genetics 8, 215-239.
    Chen, F., and Hu, S.J. (2012). Effect of microRNA-34a in cell cycle, differentiation, and apoptosis: a review. Journal of biochemical and molecular toxicology 26, 79-86.
    Cui, L., Zhou, H., Zhao, H., Zhou, Y., Xu, R., Xu, X., Zheng, L., Xue, Z., Xia, W., Zhang, B., et al. (2012). MicroRNA-99a induces G1-phase cell cycle arrest and suppresses tumorigenicity in renal cell carcinoma. BMC cancer 12, 546.
    Depowski, P.L., Rosenthal, S.I., and Ross, J.S. (2001). Loss of expression of the PTEN gene protein product is associated with poor outcome in breast cancer. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc 14, 672-676.
    Dierov, J., Prosniak, M., Gallia, G., and Gartenhaus, R.B. (1999). Increased G1 cyclin/cdk activity in cells overexpressing the candidate oncogene, MCT-1. Journal of cellular biochemistry 74, 544-550.
    Esteva, F.J., Guo, H., Zhang, S., Santa-Maria, C., Stone, S., Lanchbury, J.S., Sahin, A.A., Hortobagyi, G.N., and Yu, D. (2010). PTEN, PIK3CA, p-AKT, and p-p70S6K status: association with trastuzumab response and survival in patients with HER2-positive metastatic breast cancer. The American journal of pathology 177, 1647-1656.
    Ferracin, M., Bassi, C., Pedriali, M., Pagotto, S., D'Abundo, L., Zagatti, B., Corra, F., Musa, G., Callegari, E., Lupini, L., et al. (2013). miR-125b targets erythropoietin and its receptor and their expression correlates with metastatic potential and ERBB2/HER2 expression. Molecular cancer 12, 130.
    Frankel, L.B., Christoffersen, N.R., Jacobsen, A., Lindow, M., Krogh, A., and Lund, A.H. (2008). Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. The Journal of biological chemistry 283, 1026-1033.
    Friedman, J.M., Liang, G., Liu, C.C., Wolff, E.M., Tsai, Y.C., Ye, W., Zhou, X., and Jones, P.A. (2009). The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer research 69, 2623-2629.
    Gabriely, G., Wurdinger, T., Kesari, S., Esau, C.C., Burchard, J., Linsley, P.S., and Krichevsky, A.M. (2008). MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Molecular and cellular biology 28, 5369-5380.
    Gao, F., Wang, X., Zhu, F., Wang, Q., Zhang, X., Guo, C., Zhou, C., Ma, C., Sun, W., Zhang, Y., et al. (2009). PDCD4 gene silencing in gliomas is associated with 5'CpG island methylation and unfavourable prognosis. Journal of cellular and molecular medicine 13, 4257-4267.
    Gao, W., Shen, H., Liu, L., Xu, J., Xu, J., and Shu, Y. (2011). MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. Journal of cancer research and clinical oncology 137, 557-566.
    Gramantieri, L., Ferracin, M., Fornari, F., Veronese, A., Sabbioni, S., Liu, C.G., Calin, G.A., Giovannini, C., Ferrazzi, E., Grazi, G.L., et al. (2007). Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer research 67, 6092-6099.
    Grimson, A., Farh, K.K., Johnston, W.K., Garrett-Engele, P., Lim, L.P., and Bartel, D.P. (2007). MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Molecular cell 27, 91-105.
    Han, L., Yue, X., Zhou, X., Lan, F.M., You, G., Zhang, W., Zhang, K.L., Zhang, C.Z., Cheng, J.Q., Yu, S.Z., et al. (2012). MicroRNA-21 expression is regulated by beta-catenin/STAT3 pathway and promotes glioma cell invasion by direct targeting RECK. CNS neuroscience & therapeutics 18, 573-583.
    Hauptmann, J., and Meister, G. (2013). Argonaute regulation: two roads to the same destination. Developmental cell 25, 553-554.
    Hayashita, Y., Osada, H., Tatematsu, Y., Yamada, H., Yanagisawa, K., Tomida, S., Yatabe, Y., Kawahara, K., Sekido, Y., and Takahashi, T. (2005). A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer research 65, 9628-9632.
    Hsia, T.C., Tu, C.Y., Chen, Y.J., Wei, Y.L., Yu, M.C., Hsu, S.C., Tsai, S.L., Chen, W.S., Yeh, M.H., Yen, C.J., et al. (2013). Lapatinib-mediated cyclooxygenase-2 expression via epidermal growth factor receptor/HuR interaction enhances the aggressiveness of triple-negative breast cancer cells. Molecular pharmacology 83, 857-869.
    Hsu, H.L., Choy, C.O., Kasiappan, R., Shih, H.J., Sawyer, J.R., Shu, C.L., Chu, K.L., Chen, Y.R., Hsu, H.F., and Gartenhaus, R.B. (2007). MCT-1 oncogene downregulates p53 and destabilizes genome structure in the response to DNA double-strand damage. DNA repair 6, 1319-1332.
    Hsu, H.L., Shi, B., and Gartenhaus, R.B. (2005). The MCT-1 oncogene product impairs cell cycle checkpoint control and transforms human mammary epithelial cells. Oncogene 24, 4956-4964.
    Hu, Z., Fan, C., Oh, D.S., Marron, J.S., He, X., Qaqish, B.F., Livasy, C., Carey, L.A., Reynolds, E., Dressler, L., et al. (2006). The molecular portraits of breast tumors are conserved across microarray platforms. BMC genomics 7, 96.
    Huang, G.L., Zhang, X.H., Guo, G.L., Huang, K.T., Yang, K.Y., Shen, X., You, J., and Hu, X.Q. (2009). Clinical significance of miR-21 expression in breast cancer: SYBR-Green I-based real-time RT-PCR study of invasive ductal carcinoma. Oncology reports 21, 673-679.
    Huntzinger, E., and Izaurralde, E. (2011). Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nature reviews Genetics 12, 99-110.
    Iorio, M.V., Ferracin, M., Liu, C.G., Veronese, A., Spizzo, R., Sabbioni, S., Magri, E., Pedriali, M., Fabbri, M., Campiglio, M., et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer research 65, 7065-7070.
    Jackson, R.J., and Standart, N. (2007). How do microRNAs regulate gene expression? Science's STKE : signal transduction knowledge environment 2007, re1.
    Kasiappan, R., Shih, H.J., Chu, K.L., Chen, W.T., Liu, H.P., Huang, S.F., Choy, C.O., Shu, C.L., Din, R., Chu, J.S., et al. (2009). Loss of p53 and MCT-1 overexpression synergistically promote chromosome instability and tumorigenicity. Molecular cancer research : MCR 7, 536-548.
    Kasiappan, R., Shih, H.J., Wu, M.H., Choy, C., Lin, T.D., Chen, L., and Hsu, H.L. (2010). The antagonism between MCT-1 and p53 affects the tumorigenic outcomes. Mol Cancer 9, 311.
    Kim, H.H., Kuwano, Y., Srikantan, S., Lee, E.K., Martindale, J.L., and Gorospe, M. (2009). HuR recruits let-7/RISC to repress c-Myc expression. Genes & development 23, 1743-1748.
    Kim, H.R., Roe, J.S., Lee, J.E., Hwang, I.Y., Cho, E.J., and Youn, H.D. (2012). A p53-inducible microRNA-34a downregulates Ras signaling by targeting IMPDH. Biochemical and biophysical research communications 418, 682-688.
    Kim, N.H., Kim, H.S., Li, X.Y., Lee, I., Choi, H.S., Kang, S.E., Cha, S.Y., Ryu, J.K., Yoon, D., Fearon, E.R., et al. (2011). A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. The Journal of cell biology 195, 417-433.
    Kloosterman, W.P., and Plasterk, R.H. (2006). The diverse functions of microRNAs in animal development and disease. Developmental cell 11, 441-450.
    Krichevsky, A.M., and Gabriely, G. (2009). miR-21: a small multi-faceted RNA. Journal of cellular and molecular medicine 13, 39-53.
    Lau, N.C., Lim, L.P., Weinstein, E.G., and Bartel, D.P. (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858-862.
    Lee, E.J., Gusev, Y., Jiang, J., Nuovo, G.J., Lerner, M.R., Frankel, W.L., Morgan, D.L., Postier, R.G., Brackett, D.J., and Schmittgen, T.D. (2007). Expression profiling identifies microRNA signature in pancreatic cancer. International journal of cancer Journal international du cancer 120, 1046-1054.
    Lee, J.S., Kim, H.S., Kim, Y.B., Lee, M.C., Park, C.S., and Min, K.W. (2004). Reduced PTEN expression is associated with poor outcome and angiogenesis in invasive ductal carcinoma of the breast. Applied immunohistochemistry & molecular morphology : AIMM / official publication of the Society for Applied Immunohistochemistry 12, 205-210.
    Leung, A.K., and Sharp, P.A. (2006). Function and localization of microRNAs in mammalian cells. Cold Spring Harbor symposia on quantitative biology 71, 29-38.
    Leung, A.K., and Sharp, P.A. (2007). microRNAs: a safeguard against turmoil? Cell 130, 581-585.
    Leung, A.K., and Sharp, P.A. (2010). MicroRNA functions in stress responses. Molecular cell 40, 205-215.
    Levenson, A.S., Thurn, K.E., Simons, L.A., Veliceasa, D., Jarrett, J., Osipo, C., Jordan, V.C., Volpert, O.V., Satcher, R.L., Jr., and Gartenhaus, R.B. (2005). MCT-1 oncogene contributes to increased in vivo tumorigenicity of MCF7 cells by promotion of angiogenesis and inhibition of apoptosis. Cancer research 65, 10651-10656.
    Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20.
    Li, C., Heidt, D.G., Dalerba, P., Burant, C.F., Zhang, L., Adsay, V., Wicha, M., Clarke, M.F., and Simeone, D.M. (2007). Identification of pancreatic cancer stem cells. Cancer research 67, 1030-1037.
    Li, D., Liu, X., Lin, L., Hou, J., Li, N., Wang, C., Wang, P., Zhang, Q., Zhang, P., Zhou, W., et al. (2011). MicroRNA-99a inhibits hepatocellular carcinoma growth and correlates with prognosis of patients with hepatocellular carcinoma. The Journal of biological chemistry 286, 36677-36685.
    Li, J., Simpson, L., Takahashi, M., Miliaresis, C., Myers, M.P., Tonks, N., and Parsons, R. (1998). The PTEN/MMAC1 tumor suppressor induces cell death that is rescued by the AKT/protein kinase B oncogene. Cancer research 58, 5667-5672.
    Li, L.Q., Li, X.L., Wang, L., Du, W.J., Guo, R., Liang, H.H., Liu, X., Liang, D.S., Lu, Y.J., Shan, H.L., et al. (2012). Matrine inhibits breast cancer growth via miR-21/PTEN/Akt pathway in MCF-7 cells. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 30, 631-641.
    Li, N., Fu, H., Tie, Y., Hu, Z., Kong, W., Wu, Y., and Zheng, X. (2009a). miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer letters 275, 44-53.
    Li, W., Duan, R., Kooy, F., Sherman, S.L., Zhou, W., and Jin, P. (2009b). Germline mutation of microRNA-125a is associated with breast cancer. Journal of medical genetics 46, 358-360.
    Li, W., Xie, L., He, X., Li, J., Tu, K., Wei, L., Wu, J., Guo, Y., Ma, X., Zhang, P., et al. (2008). Diagnostic and prognostic implications of microRNAs in human hepatocellular carcinoma. International journal of cancer Journal international du cancer 123, 1616-1622.
    Li, X., Xin, S., He, Z., Che, X., Wang, J., Xiao, X., Chen, J., and Song, X. (2014). MicroRNA-21 (miR-21) Post-Transcriptionally Downregulates Tumor Suppressor PDCD4 and Promotes Cell Transformation, Proliferation, and Metastasis in Renal Cell Carcinoma. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 33, 1631-1642.
    Liu, J., Carmell, M.A., Rivas, F.V., Marsden, C.G., Thomson, J.M., Song, J.J., Hammond, S.M., Joshua-Tor, L., and Hannon, G.J. (2004). Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437-1441.
    Lou, Y., Yang, X., Wang, F., Cui, Z., and Huang, Y. (2010). MicroRNA-21 promotes the cell proliferation, invasion and migration abilities in ovarian epithelial carcinomas through inhibiting the expression of PTEN protein. International journal of molecular medicine 26, 819-827.
    Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B.L., Mak, R.H., Ferrando, A.A., et al. (2005). MicroRNA expression profiles classify human cancers. Nature 435, 834-838.
    Lu, Y., Lin, Y.Z., LaPushin, R., Cuevas, B., Fang, X., Yu, S.X., Davies, M.A., Khan, H., Furui, T., Mao, M., et al. (1999). The PTEN/MMAC1/TEP tumor suppressor gene decreases cell growth and induces apoptosis and anoikis in breast cancer cells. Oncogene 18, 7034-7045.
    Ma, G., Zhang, H., Dong, M., Zheng, X., Ozaki, I., Matsuhashi, S., and Guo, K. (2013). Downregulation of programmed cell death 4 (PDCD4) in tumorigenesis and progression of human digestive tract cancers. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 34, 3879-3885.
    Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R., and Tuschl, T. (2002). Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563-574.
    Matsuhashi, S., Hamajima, H., Xia, J., Zhang, H., Mizuta, T., Anzai, K., and Ozaki, I. (2014). Control of a tumor suppressor PDCD4: Degradation mechanisms of the protein in hepatocellular carcinoma cells. Cellular signalling 26, 603-610.
    Mazan-Mamczarz, K., Hagner, P.R., Corl, S., Srikantan, S., Wood, W.H., Becker, K.G., Gorospe, M., Keene, J.D., Levenson, A.S., and Gartenhaus, R.B. (2008). Post-transcriptional gene regulation by HuR promotes a more tumorigenic phenotype. Oncogene 27, 6151-6163.
    Meister, G., Landthaler, M., Patkaniowska, A., Dorsett, Y., Teng, G., and Tuschl, T. (2004). Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Molecular cell 15, 185-197.
    Meng, F., Henson, R., Wehbe-Janek, H., Ghoshal, K., Jacob, S.T., and Patel, T. (2007). MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133, 647-658.
    Nagao, Y., Hisaoka, M., Matsuyama, A., Kanemitsu, S., Hamada, T., Fukuyama, T., Nakano, R., Uchiyama, A., Kawamoto, M., Yamaguchi, K., et al. (2012). Association of microRNA-21 expression with its targets, PDCD4 and TIMP3, in pancreatic ductal adenocarcinoma. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc 25, 112-121.
    Nagayama, K., Kohno, T., Sato, M., Arai, Y., Minna, J.D., and Yokota, J. (2007). Homozygous deletion scanning of the lung cancer genome at a 100-kb resolution. Genes, chromosomes & cancer 46, 1000-1010.
    Nilsen, T.W. (2007). Mechanisms of microRNA-mediated gene regulation in animal cells. Trends in genetics : TIG 23, 243-249.
    Peters, L., and Meister, G. (2007). Argonaute proteins: mediators of RNA silencing. Molecular cell 26, 611-623.
    Pillai, R.S., Bhattacharyya, S.N., Artus, C.G., Zoller, T., Cougot, N., Basyuk, E., Bertrand, E., and Filipowicz, W. (2005). Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309, 1573-1576.
    Prosniak, M., Dierov, J., Okami, K., Tilton, B., Jameson, B., Sawaya, B.E., and Gartenhaus, R.B. (1998). A novel candidate oncogene, MCT-1, is involved in cell cycle progression. Cancer research 58, 4233-4237.
    Provost, P., Dishart, D., Doucet, J., Frendewey, D., Samuelsson, B., and Radmark, O. (2002). Ribonuclease activity and RNA binding of recombinant human Dicer. The EMBO journal 21, 5864-5874.
    Quintana, P.J., Neuwirth, E.A., and Grosovsky, A.J. (2001). Interchromosomal gene conversion at an endogenous human cell locus. Genetics 158, 757-767.
    Raver-Shapira, N., Marciano, E., Meiri, E., Spector, Y., Rosenfeld, N., Moskovits, N., Bentwich, Z., and Oren, M. (2007). Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Molecular cell 26, 731-743.
    Reinert, L.S., Shi, B., Nandi, S., Mazan-Mamczarz, K., Vitolo, M., Bachman, K.E., He, H., and Gartenhaus, R.B. (2006). MCT-1 protein interacts with the cap complex and modulates messenger RNA translational profiles. Cancer research 66, 8994-9001.
    Saetrom, P., Biesinger, J., Li, S.M., Smith, D., Thomas, L.F., Majzoub, K., Rivas, G.E., Alluin, J., Rossi, J.J., Krontiris, T.G., et al. (2009). A risk variant in an miR-125b binding site in BMPR1B is associated with breast cancer pathogenesis. Cancer research 69, 7459-7465.
    Schetter, A.J., Leung, S.Y., Sohn, J.J., Zanetti, K.A., Bowman, E.D., Yanaihara, N., Yuen, S.T., Chan, T.L., Kwong, D.L., Au, G.K., et al. (2008). MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA : the journal of the American Medical Association 299, 425-436.
    Schleich, S., Strassburger, K., Janiesch, P.C., Koledachkina, T., Miller, K.K., Haneke, K., Cheng, Y.S., Kuchler, K., Stoecklin, G., Duncan, K.E., et al. (2014). DENR-MCT-1 promotes translation re-initiation downstream of uORFs to control tissue growth. Nature.
    Schramedei, K., Morbt, N., Pfeifer, G., Lauter, J., Rosolowski, M., Tomm, J.M., von Bergen, M., Horn, F., and Brocke-Heidrich, K. (2011). MicroRNA-21 targets tumor suppressor genes ANP32A and SMARCA4. Oncogene 30, 2975-2985.
    Selaru, F.M., Olaru, A.V., Kan, T., David, S., Cheng, Y., Mori, Y., Yang, J., Paun, B., Jin, Z., Agarwal, R., et al. (2009). MicroRNA-21 is overexpressed in human cholangiocarcinoma and regulates programmed cell death 4 and tissue inhibitor of metalloproteinase 3. Hepatology 49, 1595-1601.
    Shen, J., Xia, W., Khotskaya, Y.B., Huo, L., Nakanishi, K., Lim, S.O., Du, Y., Wang, Y., Chang, W.C., Chen, C.H., et al. (2013). EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2. Nature 497, 383-387.
    Shi, B., Hsu, H.L., Evens, A.M., Gordon, L.I., and Gartenhaus, R.B. (2003). Expression of the candidate MCT-1 oncogene in B- and T-cell lymphoid malignancies. Blood 102, 297-302.
    Shih, H.J., Chen, H.H., Chen, Y.A., Wu, M.H., Liou, G.G., Chang, W.W., Chen, L., Wang, L.H., and Hsu, H.L. (2012). Targeting MCT-1 oncogene inhibits Shc pathway and xenograft tumorigenicity. Oncotarget 3, 1401-1415.
    Si, M.L., Zhu, S., Wu, H., Lu, Z., Wu, F., and Mo, Y.Y. (2007). miR-21-mediated tumor growth. Oncogene 26, 2799-2803.
    Smibert, P., Yang, J.S., Azzam, G., Liu, J.L., and Lai, E.C. (2013). Homeostatic control of Argonaute stability by microRNA availability. Nature structural & molecular biology 20, 789-795.
    Smirnov, D.A., and Cheung, V.G. (2008). ATM gene mutations result in both recessive and dominant expression phenotypes of genes and microRNAs. American journal of human genetics 83, 243-253.
    Song, B., Wang, C., Liu, J., Wang, X., Lv, L., Wei, L., Xie, L., Zheng, Y., and Song, X. (2010). MicroRNA-21 regulates breast cancer invasion partly by targeting tissue inhibitor of metalloproteinase 3 expression. Journal of experimental & clinical cancer research : CR 29, 29.
    Song, J.J., Smith, S.K., Hannon, G.J., and Joshua-Tor, L. (2004). Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434-1437.
    Sun, D., Layer, R., Mueller, A.C., Cichewicz, M.A., Negishi, M., Paschal, B.M., and Dutta, A. (2014). Regulation of several androgen-induced genes through the repression of the miR-99a/let-7c/miR-125b-2 miRNA cluster in prostate cancer cells. Oncogene 33, 1448-1457.
    Sun, D., Lee, Y.S., Malhotra, A., Kim, H.K., Matecic, M., Evans, C., Jensen, R.V., Moskaluk, C.A., and Dutta, A. (2011). miR-99 family of MicroRNAs suppresses the expression of prostate-specific antigen and prostate cancer cell proliferation. Cancer research 71, 1313-1324.
    Sun, F., Fu, H., Liu, Q., Tie, Y., Zhu, J., Xing, R., Sun, Z., and Zheng, X. (2008). Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS letters 582, 1564-1568.
    Tamura, M., Gu, J., Matsumoto, K., Aota, S., Parsons, R., and Yamada, K.M. (1998). Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science 280, 1614-1617.
    Tamura, M., Gu, J., Takino, T., and Yamada, K.M. (1999). Tumor suppressor PTEN inhibition of cell invasion, migration, and growth: differential involvement of focal adhesion kinase and p130Cas. Cancer research 59, 442-449.
    Tazawa, H., Tsuchiya, N., Izumiya, M., and Nakagama, H. (2007). Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proceedings of the National Academy of Sciences of the United States of America 104, 15472-15477.
    Thiery, J.P. (2003). Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15, 740-746.
    Toyota, M., Suzuki, H., Sasaki, Y., Maruyama, R., Imai, K., Shinomura, Y., and Tokino, T. (2008). Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer research 68, 4123-4132.
    van 't Veer, L.J., Dai, H., van de Vijver, M.J., He, Y.D., Hart, A.A., Mao, M., Peterse, H.L., van der Kooy, K., Marton, M.J., Witteveen, A.T., et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530-536.
    Ventura, A., and Jacks, T. (2009). MicroRNAs and cancer: short RNAs go a long way. Cell 136, 586-591.
    Weber, M., Baker, M.B., Moore, J.P., and Searles, C.D. (2010). MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochemical and biophysical research communications 393, 643-648.
    Welch, C., Chen, Y., and Stallings, R.L. (2007). MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26, 5017-5022.
    Weng, L.P., Smith, W.M., Dahia, P.L., Ziebold, U., Gil, E., Lees, J.A., and Eng, C. (1999). PTEN suppresses breast cancer cell growth by phosphatase activity-dependent G1 arrest followed by cell death. Cancer research 59, 5808-5814.
    Wiggins, J.F., Ruffino, L., Kelnar, K., Omotola, M., Patrawala, L., Brown, D., and Bader, A.G. (2010). Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer research 70, 5923-5930.
    Wu, M.H., Chen, Y.A., Chen, H.H., Chang, K.W., Chang, I.S., Wang, L.H., and Hsu, H.L. (2014). MCT-1 expression and PTEN deficiency synergistically promote neoplastic multinucleation through the Src/p190B signaling activation. Oncogene.
    Yamada, H., Yanagisawa, K., Tokumaru, S., Taguchi, A., Nimura, Y., Osada, H., Nagino, M., and Takahashi, T. (2008). Detailed characterization of a homozygously deleted region corresponding to a candidate tumor suppressor locus at 21q11-21 in human lung cancer. Genes, chromosomes & cancer 47, 810-818.
    Yan, L.X., Huang, X.F., Shao, Q., Huang, M.Y., Deng, L., Wu, Q.L., Zeng, Y.X., and Shao, J.Y. (2008). MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. Rna 14, 2348-2360.
    Yen, Y.C., Shiah, S.G., Chu, H.C., Hsu, Y.M., Hsiao, J.R., Chang, J.Y., Hung, W.C., Liao, C.T., Cheng, A.J., Lu, Y.C., et al. (2014). Reciprocal regulation of microRNA-99a and insulin-like growth factor I receptor signaling in oral squamous cell carcinoma cells. Molecular cancer 13, 6.
    Yin, D., Ogawa, S., Kawamata, N., Leiter, A., Ham, M., Li, D., Doan, N.B., Said, J.W., Black, K.L., and Phillip Koeffler, H. (2013). miR-34a functions as a tumor suppressor modulating EGFR in glioblastoma multiforme. Oncogene 32, 1155-1163.
    Yoon, J.H., Abdelmohsen, K., Kim, J., Yang, X., Martindale, J.L., Tominaga-Yamanaka, K., White, E.J., Orjalo, A.V., Rinn, J.L., Kreft, S.G., et al. (2013). Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nature communications 4, 2939.
    Zenz, T., Mohr, J., Eldering, E., Kater, A.P., Buhler, A., Kienle, D., Winkler, D., Durig, J., van Oers, M.H., Mertens, D., et al. (2009). miR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood 113, 3801-3808.
    Zhang, A., Liu, Y., Shen, Y., Xu, Y., and Li, X. (2011a). miR-21 modulates cell apoptosis by targeting multiple genes in renal cell carcinoma. Urology 78, 474 e413-479.
    Zhang, B.G., Li, J.F., Yu, B.Q., Zhu, Z.G., Liu, B.Y., and Yan, M. (2012). microRNA-21 promotes tumor proliferation and invasion in gastric cancer by targeting PTEN. Oncology reports 27, 1019-1026.
    Zhang, J., Jin, H., Liu, H., Lv, S., Wang, B., Wang, R., Liu, H., Ding, M., Yang, Y., Li, L., et al. (2014). MiRNA-99a directly regulates AGO2 through translational repression in hepatocellular carcinoma. Oncogenesis 3, e97.
    Zhang, Y., Yan, L.X., Wu, Q.N., Du, Z.M., Chen, J., Liao, D.Z., Huang, M.Y., Hou, J.H., Wu, Q.L., Zeng, M.S., et al. (2011b). miR-125b is methylated and functions as a tumor suppressor by regulating the ETS1 proto-oncogene in human invasive breast cancer. Cancer research 71, 3552-3562.
    Zhang, Z., Li, Z., Gao, C., Chen, P., Chen, J., Liu, W., Xiao, S., and Lu, H. (2008). miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Laboratory investigation; a journal of technical methods and pathology 88, 1358-1366.
    Zhu, S., Wu, H., Wu, F., Nie, D., Sheng, S., and Mo, Y.Y. (2008). MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell research 18, 350-359.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE