簡易檢索 / 詳目顯示

研究生: 陳銘遠
Chen, Ming-Yuan
論文名稱: 在巨量天線多重輸入多重輸出系統下低複雜度且具數據串間干擾消除之混合預編碼設計研究
A Study of Low-Complexity Hybrid Precoder Design with Inter-Stream Interference Cancellation for Massive MIMO Systems
指導教授: 蔡育仁
Tsai, Yuh-Ren
口試委員: 溫志宏
Wen, Jyh-Horng
梁耀仁
Liang, Yao-Jen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 48
中文關鍵詞: 混合預編碼巨量多重輸入多重輸出
外文關鍵詞: hybrid, precoder, massive, MIMO
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了因應下世代行動通訊系統更高的資料率,巨量天線多重輸入多重輸出系統在近年來成為熱門的研究議題。但是巨量天線多重輸入多重輸出系統需耗費大量的硬體元件像是射頻鏈路,如此將消耗極大的功率來運作此系統。因此,提出混合預編碼架構,利用極少於天線數的射頻元件,搭配一個數位基頻帶預編碼器以及一個類比射頻預編碼器進行巨量天線多重輸入多重輸出系統的訊號處理。
    在我的研究中,射頻預編碼器之設計主要可以分為兩類。第一類是不對通道矩陣做奇異值分解,因為在巨量天線多重輸入多重輸出系統其運算複雜度相當高。再者,我們並不能夠知道實際傳輸路徑的輻射角及入射角的角度,因此我們從預先定義好的編碼簿挑選出幾個基底作為射頻預編碼器,將訊號盡可能地朝實際傳輸路徑集中能量送出,並且在接收端調整天線接收角度進行最佳接收。第二類是對通道矩陣做奇異值分解,並且直接取最佳預編碼器之相位作為射頻預編碼器,如次可以形成多重波束並且非常接近最佳預編碼器之波束成型之方向。在這領域大部分的研究忽略資料流間干擾,我們利用奇異值分解來設計數位基頻帶預編碼器以避免接收端產生資料流間干擾。因此,如果實際考慮干擾的影響,我們提出的混合預編碼器之設計方法會比別人提出的方法還要更好。


    To support the higher data rate in the next generation mobile communication system, massive multiple-input multiple-output (MIMO) systems has attracted a lot of attentions for the past few years. The disadvantage of massive MIMO systems is high power consumption, since large amount of RF chains should be deployed. Hence, hybrid precoding architecture, which splits the traditional baseband precoder into a RF precoder and baseband prcoder, is proposed to implement massive MIMO systems with small amount of RF chains much less than the number of antennas. In this work, the designs of RF precoder are classified into two categories. The one is not to take singular value decomposition (SVD) for channel matrix, since the computational complexity is very high in massive MIMO systems. Therefore, we will choose several bases from a pre-defined codebook as RF precoder, because the angle of departure (AOD) and angle of arrival (AOA) of the propagation paths are assumed to be unknown. The other approach is to take SVD for channel matrix and extract the phase of the optimal precoder as RF precoder which can form a multiple beam pattern. Baseband precoder and combiner are used to avoid inter-stream interference which most of researches ignores. Our methods can achieve an interference-free effect at the receiver. As a result, we can get a better performance than other researches if interference is considered.

    ABSTRACT II 摘要 III 誌謝 IV TABLE OF CONTENTS IV LIST OF FIGURES VI LIST OF TABLES VII Chapter 1 Introduction 1 1.1 General Background Information 1 1.2 Literature Review 3 Chapter 2 System Model 5 2.1 Traditional MIMO Systems 5 2.2 System Model for Hybrid Precoding 7 Chapter 3 Channel Model 10 3.1 Clustered Channel Model 10 Chapter 4 Low-Complexity Hybrid Precoder Design 13 4.1 Problem Formulation 13 4.1.1 Ignoring the Inter-Stream Interference 13 4.1.2 Considering the Inter-Stream Interference and the Discussion of Noise Whitening 15 4.2 RF Precoder Design without Taking SVD for Channel Matrix 19 4.2.1 Orthonormal Basis Selection 19 4.2.2 Uniformly Quantized Basis Selection 25 4.2.3 Complexity of SVD and Angular Domain Channel 30 4.3 RF Precoder Design with Taking SVD for Channel Matrix 31 Chapter 5 Simulation Results 34 5.1 Performance for Ignoring the Inter-Stream Interference 34 5.2 Performance for Basis Selection 37 5.3 Performance for Modifying Baseband Precoder via SVD 44 Chapter 6 Conclusion 46 References 47

    [1] S. Yong and C. Chong, “An overview of multigigabit wireless through millimeter wave technology: potentials and technical challenges,” EURASIP J. Wireless Commun. Netw., vol. 2007, no. 1, pp. 50–50, 2007.
    [2] O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, Jr., “Spatially sparse precoding in millimeter wave MIMO systems,” IEEE Trans. Wireless Commun., vol. 13, no. 3, pp. 1499–1513, Mar. 2014.
    [3] R. Méndez-Rial, C. Rusu, N. González-Prelcic, and R. W. Heath, Jr., “Dictionary-free hybrid precoders and combiners for mmWave MIMO systems,” in Proc. IEEE Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Jun./Jul. 2015, pp. 151–155.
    [4] C. Rusu, R. Mendez-Rial, N. Gonz ` alez-Prelcic, and R. W. Heath, “Low complexity hybrid precoding strategies for millimeter wave communication systems,” IEEE Trans Wireless Commun., vol. 15, no. 12, pp. 8380–8393, 2016.
    [5] P. Smulders and L. Correia, “Characterisation of propagation in 60 GHz radio channels,” Electron. Commun. Eng. J., vol. 9, no. 2, pp. 73–80, 1997.
    [6] H. Xu, V. Kukshya, and T. Rappaport, “Spatial and temporal characteristics of 60-GHz indoor channels,” IEEE J. Sel. Areas Commun., vol. 20, no. 3, pp. 620–630, 2002.
    [7] V. Raghavan and A. M. Sayeed, “Sublinear capacity scaling laws for sparse MIMO channels,” IEEE Trans. Inf. Theory, vol. 57, no. 1, pp. 345–364, Jan. 2011.
    [8] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge, U.K.: Cambridge Univ. Press, 2007.
    [9] Y. S. Cho, J. Kim, W. Y. Yang, and C. G. Kang, MIMO-OFDM Wireless Communications with MATLAB, Singapore: John Wiley & Sons(Asia), 2010.
    [10] Q. Spencer, B. Jeffs, M. Jensen, and A. Swindlehurst, “Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel,” IEEE J. Sel. Areas Commun., vol. 18, no. 3, pp. 347–360, Mar. 2000.
    [11] A. Goldsmith, S. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits of MIMO channels,” IEEE J. Sel. Areas Commun., vol. 21, no. 5, pp. 684–702, 2003.
    [12] G. H. Golub and C. F. VanLoan, Matrix Computations, 3rd ed. Baltimore, MD: The Johns Hopkins Univ. Press, 1996.

    QR CODE