簡易檢索 / 詳目顯示

研究生: 蔡宗岩
論文名稱: 以奈米碳管、碳纖維製備場發射陰極材料並探討電極幾何形狀對場發射特性之影響
指導教授: 戴念華
林諭男
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 126
中文關鍵詞: 奈米碳管場發射網印法
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討化學氣相沈積法(CVD)成長碳纖維之製程參數與其場發射特性,實驗結果發現石墨結晶性不良之碳纖維,經場發射量測會造成石墨層破壞,導致場發射性質先提升再劣化,另外將奈米碳管摻入ITO溶膠中,以旋鍍法製備場發射陰極材料具有良好之附著性,奈米碳管由薄膜裂縫露出表面,提供電子場發射位置,但因分散性不良導致發射電子位置不均。比較各種場發射陰極材料之製程,以網印法最具工業化潛力,本研究將奈米碳管與銀膠配製成碳管銀膠並網印於陶瓷基材上,經過熱處理可以得到很好的場發射特性,實驗中嘗試改變電極幾何形狀以探討其發射電子的分佈情況與場發射特性,結果發現陰極經陣列化處理可提高場發射性質與電子分佈均勻性,其中以環狀電極圖形可以達到極高的電流密度,其中以二甲苯成長奈米碳管束所製備之陰極樣品,在低操作電壓下(300V)可達30 mA/cm2之電流密度,起始電場為0.5-0.6 V/μm,臨界電場為1.7 V/μm,於更高操作電壓下(500V)達到145-154 mA/cm2之電流密度,起始電場為0.6-1.0 V/μm。經模擬與實驗結果得知電極邊緣之電場較大,位於此處之奈米碳管最容易發射電子,依此原則可以設計出不同形狀之圖形,提供未來製作場發射發光元件之應用。


    摘要……………………………………………………………………....I 總目錄…………………………………………………………………...II 圖表目錄………………………………………………………………..VI 第一章 緒論……………………………………………………….……..1 1.1 奈米碳管簡介………………………………………………….1 1.1.1 奈米碳管之結構…..……...………………………….....2 1.1.2 奈米碳管主要製程.………………………………….....3 1.1.2.1 弧光放電法………………...……………………3 1.1.2.2 雷射熱昇華法……………………...…………....5 1.1.2.3 化學氣相沉積法………...………………………5 1.1.3 奈米碳管之機械性質……………………………….….6 1.1.4 奈米碳管之應用……………….…………………….…7 1.1.4.1 場發射電子源之用……...………………………7 1.1.4.2 原子力顯微鏡(AFM)掃瞄探針………………....8 1.1.4.3 鋰離子二次電池與燃料電池…………………...8 1.1.4.4 其他方面的應用………………………………...9 第二章 研究動機與文獻回顧…………………………………………18 2.1 研究動機……………………………………………….……..18 2.2 以流動催化劑法製備奈米碳管………………………….…..20 2.3 場發射理論…………………………………………………...21 2.3.1 Fowler-Nordheim方程式…………………….……..…21 2.3.2 Fowler-Nordheim方程式應用於奈米碳管場發射量測 ………………………………………………………………..22 2.4奈米碳管場發射應用…………………………………………25 2.4.1應用於場發射照明元件……………………………….25 2.4.2應用於場發射平面顯示器…………………………….26 2.4.3 應用在真空三極元件…………………………………28 第三章 研究方法方法及實驗步驟……………………………………36 3.1 研究方法………………………………………………...……36 3.2 實驗步驟………………………………………….…………..37 3.2.1 以CVD法成長碳纖維……………..…………………37 3.2.1.1 催化劑溶液製備…………………...…………..37 3.2.1.2 催化劑溶液之鍍製與烘烤…………………….38 3.2.1.3 鐵鈷催化劑薄膜之製備……………………….38 3.2.1.4 以CVD法成長碳纖維…………………….…...39 3.2.2 以流動催化劑之CVD法製備奈米碳管……………..39 3.2.3 以旋鍍法製備CNT-ITO陰極材料…………………...40 3.2.4 以網印法製備場發射陰極材料………………………41 3.3 檢測方法………………………………………………….…..42 3.3.1 場發射電壓-電流量測………………...………………42 3.3.2 顯微結構觀察…………………………………………42 第四章 結果與討論………………………………………………..…..46 4.1 以CVD法在矽基板上成長碳纖維之場發射性質………….46 4.1.1 碳纖維成長結果………………………………………46 4.1.2 碳纖維場發射量測結果………………………………47 4.1.3 碳纖維經場發射量測後之表面形貌…………………48 4.1.4 纖維經場發射量測前後之拉曼光譜與TEM影像…..49 4.2 以旋鍍法製備CNT-ITO陰極材料…………………………..49 4.2.1 熱處理之結果…………………………………………49 4.2.2 場發射量測結果………………………………………51 4.3 以網印法製備場發射陰極材料……………………………...51 4.3.1 碳管銀膠經網印與熱處理之結果……………………51 4.3.2 電極圖形A之場發射量測之結果……………………53 4.3.3 電極圖形A之陰極陣列化與場發射特性……………54 4.3.4 電極圖形B之場發射特性……………………………55 4.3.5 電極圖形對場發射電子分佈之影響…………………56 4.3.6 電場模擬………………………………………………59 4.3.7 摻入奈米銀粉製作碳管銀膠…………………...…….59 4.3.8 不同型態奈米碳管、碳纖維之SEM與TEM觀察…60 4.3.9 以不同型態奈米碳管、碳纖維製備場發射陰極材料..61 4.3.10 不同型態奈米碳管、碳纖維之場發射性質……..….62 4.3.11 場發射發光圖形..…………..………………………..65 4.3.12探討不同型態之奈米碳管、碳纖維之場發射特性差異 ………………………………………………………………..67 第五章 結論…………………………………………………………..121 第六章 參考文獻…………………………………………………..…122

    1. S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354, 56 (1991)
    2. Rice University: Rick Smalley’s Group Home Page Image Gallery
    3. M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, ‘‘Exceptionally high Young’s modulus observed for individual carbon nanotubes’’, Nature, 381, 678 (1996)
    4. M. R. Falvo, G. J. Clary, R. M. Taylor, V. Chi, F. P. Brooks, S. Washburn and R. Superfine, ‘‘Bending and buckling of carbon nanotubes under large strain’’, Nature, 389, 582 (1997)
    5. A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, and R. E. Smalley, “Unraveling nanotubes: field emission from an atomic wire”, Science, 269, 1550 (1995)
    6. W. A. de Heer, A. Chatelain, and D. Ugarte, “A carbon nanotube field-emission electron source”, Science, 270, 1179 (1995)
    7. H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley, ‘‘Nanotubes as nanoprobes in scanning probe microscopy’’, Nature, 384, 147 (1996)
    8. S. S. Wong, E. Joselevich, A. T. Woolley, C.-L. Cheung, C. M. Lieber, ‘‘Covalently functionalized nanotubes as nanometresized probes in chemistry and biology’’, Nature, 394, 52 (1998)
    9. B. I. Yakobson and R. E. Smalley, ‘‘Fullerene nanotubes: C1,000,000 and beyond’’, American Scientist, 85, 324 (1997)
    10. P. Calvert, ‘‘Strength in disunity’’, Nature, 357, 356 (1992)
    11. L. Jin, C. Bower, and O.Zhou, “Alignment of carbon nanotubes in a polymer matrix by mechanical stretching”, Appl. Phys. Lett., 73 (9), 1197 (1998)
    12. Y. Y. Wei, X. Fan, and Gyula Eres, ‘‘Directed assembly of carbon nanotube electronic circuits by selective area chemical vapor deposition on prepatterned catalyst electrode structures’’, J. Vac. Sci. Technol. B, 18, 3586 (2000)
    13. F. Okuyama, T. Hayashi, and Y. Fujimoto, “Formation of carbon nanotubes and their filling with metallic fibers on ion-emitting field anodes”, J. Appl. Phys., 84 (3), 1626 (1998)
    14. A. A. Setlur, J.M. Lauerhaas, J.Y. Dai, and R.P.H. Chang, ‘‘A method for synthesizing large quantities of carbon nanotubes and encapsulated copper nanowires”, Appl. Phys. Lett. 69 (3), 345 (1996)
    15. Chunming Niu, Enid K. Sichel, Robert Hoch, David Moy, and Howard Tennent, ‘‘High power electrochemical capacitors based on carbon nanotube electrodes’’, Appl. Phys. Lett., 70 (11), 1480 (1997)
    16. E. Frackowiak, K. Metenier, V. Bertagna, and F. Beguin, ‘‘Supercapacitor electrodes from multiwalled carbon nanotubes’’s Appl. Phys. Lett., 77 (15), 2421 (2000)
    17. Sander J. Tans, Alwin R. M. Verschueren and Cees Dekker, ‘‘Room-temperature transistor based on a single carbon nanotube’’, Nature, 393, 49 (1998)
    18. R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and Ph. Avouris, ‘‘Single- and multi-wall carbon nanotube field-effect transistors’’, Appl. Phys. Lett., 73 (17), 2447 (1998)
    19. Ph. Avouris, T. Hertel, R. Martel, T. Schmidt, H.R. Shea, R.E. Walkup, ‘‘Carbon nanotubes: nanomechanics, manipulation, and electronic devices’’, Appl. Sur. Sci., 141, 201 (1999)
    20. M. Ahlskog, R. Tarkiainen, L. Roschier, and P. Hakonen, ‘‘Single-electron transistor made of two crossing multiwalled carbon nanotubes and its noise properties’’, Appl. Phys. Lett., 77 (24), 4037 (2000)
    21. Zhen Yao, Henk W. Ch. Postma, Leon Balents and Cees Dekker, ‘‘Carbon nanotube intramolecular junctions’’, Nature, 402, 273 (1999)
    22. A. C. Dillon, K.M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, “Storage of hydrogen in single-walled carbon nanotubes”, Nature, 386, 377 (1997)
    23. Seung Mi Lee and Young Hee Lee, ‘‘Hydrogen storage in single-walled carbon nanotubes’’, Appl. Phys. Lett., 76 (20), 2877 (2000)
    24. Yan Chen, David T. Shaw, X. D. Bai, E. G. Wang, C. Lund, W. M. Lu and D. D. L. Chung, ‘‘Hydrogen storage in aligned carbon nanotubes’’, Appl. Phys. Lett., 78 (15), 2128 (2001)
    25. Wang Qikun, Zhu Changchun, Liu Weihua and Wu Ting, ‘‘Hydrogen storage by carbon nanotube and their films under ambient pressure’’, International Journal of Hydrogen Energy, 27, 497 (2002)
    26. Guangli Che, Brinda B. Lakshmi, Ellen R. Fisher and Charles R. Martin, ‘‘Carbon nanotubule membranes for electrochemical energy storage and production’’, Nature, 393, 346 (1998)
    27. B. Gao, A. Kleinhammes, X.P. Tang, C. Bower, L. Fleming, Y. Wu, O. Zhou, ‘‘Electrochemical intercalation of single-walled carbon nanotubes with lithium’’, Chem. Phys. Lett., 307, 153 (1999)
    28. H. Shimoda, B. Gao, X. P. Tang, A. Kleinhammes, L. Fleming, Y. Wu and O. Zhou, ‘‘Lithium intercalation into etched single-wall carbon nanotubes’’, Physica B, 323, 133 (2002)
    29. M. S. Dresseelhaus, G. Dresseelhaus, and R. Saito, ‘‘Physics of carbon nanotubes’’, Carbon, 33, 883 (1995)
    30. “Carbon Nanotubes and Related Structures-new materials for the twenty-first century” Peter J. F. Harris, Department of Chemisty, University of Reading
    31. S. Iijima, T.Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, 363, 603 (1993)
    32. Yahachi Saito ,Sashiro Uemura, ‘‘Field emission from carbon nanotubes and its application to electron sources’’, Carbon, 38, 169 (2000)
    33. T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, ‘‘Catalytic growth of single-walled nanotubes by laser vaporization’’, Chem. Phys. Lett., 243, 49, (1995)
    34. A.C. Dillon, P.A. Parilla, J.L. Alleman, J.D. Perkins, M.J. Heben, ‘‘Controlling single-wall nanotube diameters with variation in laser pulse power’’, Chem. Phys. Lett., 316, 13, (2000)
    35. Lijie Ci, Jinquan Wei, Bingqing Wei, Ji Liang, Cailu Xu, Dehai Wu, ‘‘Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method’’, Carbon, 39, 329 (2001)
    36. H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun and M. S. Dresselhaus, ‘‘Large-scale and low-cost synthesis of single-walled carbon nanotubes’’, Appl. Phys. Lett., 72, 3282 (1998)
    37. Chris Bower, Wei Zhu, Sungho Jin and Otto Zhou, ‘‘Plasma-induced alignment of carbon nanotubes’’, Appl. Phys. Lett., 77, 830 (2000)
    38. M. Okai, T. Muneyoshi, T. Yaguchi, and S. Sasaki, ‘‘Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition’’, Appl. Phys. Lett., 77, 3468 (2000)
    39. Z. P. Huang, J. W. Xu, Z. F. Ren, J. H. Wang, M. P. Siegal and P. N. Provencio, ‘‘Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition’’, Appl. Phys. Lett., 73, 3845 (1998)
    40. Marco Buongiorno Nardelli, B. I. Yakobson, and J. Bernholc, ‘‘Mechanism of strain release in carbon nanotubes’’, Phys. Rev. B., 57, 4277 (1998)
    41. Min-Feng Yu, Bradley S. Files, Sivaram Arepalli, and Rodney S. Ruoff, ‘‘Tensile Loading of Ropes of SingleWall Carbon Nanotubes and their Mechanical Properties’’, Phys. Rev. Lett, 84, 5552 (2000)
    42. M. Endo, C. Kim, K. Nishimura, T. Fujino, K. Miyashita, ‘‘Recent development of carbon materials for Li ion batteries’’, Carbon, 38, 183 (2000)
    43. J. Han, A. Globus, R. Jaffe, and G. Deardorff, ‘‘Molecular dynamics simulations of carbon nanotube-based gears’’, Nanotechnology, 8, 95 (1997)
    44. Mildred S. Dresselhaus, Gene Dresselhaus and Phaedon Avouris, ‘‘Carbon Nanotubes :synthesis, structure, Prpperties, and Applications’’, 21 (2000)
    45. Lijie Ci , Jinquan Wei, Bingqing Wei, Ji Liang, Cailu Xu and Dehai Wu, ‘‘Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method’’, Carbon, 39, 329 (2001)
    46. R. Kamalakaran, M. Terrones, T. Seeger, Ph. Kohler-Redlich, M. Ru hle, Y. A. Kim, T. Hayashi, and M. Endo, ‘‘Synthesis of thick and crystalline nanotube arrays by spray pyrolysis’’, Appl. Phys. Lett., 77 (24), 3385 (2000)
    47. Xianfeng Zhang, Anyuan Cao, Bingqing Wei, Yanhui Li, Jinquan Wei, Cailu Xu and Dehai Wu, ‘‘Rapid growth of well-aligned carbon nanotube arrays’’, Chem. Phys. Lett., 362, 285 (2002)
    48. R. Andrews, D. Jacques, A.M. Rao, F. Derbyshire, D. Qian, X. Fan, E.C. Dickey and J. Chen, ‘‘Continuous production of aligned carbon nanotubes: a step closer to commercial realization’’, Chem. Phys. Lett., 303, 467 (1999)
    49. Jean-Marc Bonard , Mirko Croci, Christian Klinke, Ralph Kurt , Olivier Noury,Nicolas Weiss, ‘‘Carbon nanotube films as electron field emitters’’, Carbon, 40, 1715 (2002)
    50. Jean-Marc Bonard, Mirko Croci, Imad Arfaoui, Olivier Noury, Debajyoti Sarangi, Andre Chatelain, ‘‘Can we reliably estimate the emission field and field enhancement factor of carbon nanotube film field emitters?’’, Diamond and Related Materials, 11, 763 (2002)
    51. M. Sveningsson, R.-E. Morjan, O.A. Nerushev, Y. Sato., J. Bäckström, E.E.B. Campbell, F. Rohmund, ‘‘Raman spectroscopy and field-emission properties of CVD-grown carbon-nanotube films’’, Appl. Phys. A ,73, 409 (2001)
    52. Ruiping Gao, Zhengwei Pan, and Zhong L. Wang, ‘‘In situ imaging of field emission from individual carbon nanotubes and their structural damage’’, Appl. Phys. Lett , 78, 1757 (2001)
    53. W. Zhu, C. Bower, G. P. Kochanski, S. jin, ‘‘Electron field emission from nanostructured diamond and carbon nanotubes’’, Solid-State Electronics, 45, 921 (2001)
    54. Hirohiko Murakami, Masaaki Hirakawa, Chiaki Tanaka and Hiroyuki Yamakawa, ‘‘Field emission from well-aligned, patterned, carbon nanotube emitters’’, Appl. Phys. Lett., 76, 1776 (2000)
    55. M. Yumura, S. Ohshima, K. Uchida, Y. Tasaka, Y. Kuriki a, F. Ikazaki a,Y. Saito, S. Uemura, “Synthesis and purification of multi-walled carbon nanotubes for field emitter applications”, Diamond and Related Materials, 8, 785 (1999)
    56. Jean-Marc Bonard, Thomas Sto¨ ckli, Olivier Noury and Andre´ Chaˆ telain, ‘‘Field emission from cylindrical carbon nanotube cathodes: Possibilities for luminescent tubes’’, Appl. Phys. Lett., 78, 2775 (2001)
    57. W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee,J. E. Jung, N. S. Lee, G. S. Park and J. M. Kim, ‘‘Fully sealed, high-brightness carbon-nanotube field-emission display’’, Appl. Phys. Lett., 75, 3129 (1999)
    58. W. Zhu, G. P. Kochanski, S. Jin, ‘‘Low-Field Electron Emission form Undoped Nanostructured Diamond’’, Science, 282, 1471 (1998)
    59. 卓言,「有機鐵催化劑對奈米碳管成長之研究」,國立清華大學材料科學工程研究所碩士論文 (2001)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE