簡易檢索 / 詳目顯示

研究生: 黃玠誠
Huang, Chieh-Cheng
論文名稱: 建立預血管化組織工程支架
Engineering a Prevascularized Tissue Construct
指導教授: 宋信文
Sung, Hsing-Wen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 40
中文關鍵詞: 預血管化內皮細胞間葉幹細胞人工細胞外間質
外文關鍵詞: prevascularization, endothelial cell, mesenchymal stem cell, artificial extracellular matrix
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 組織工程是近年來新興的生醫技術,為結合臨床醫學應用與生醫材料知識,利用細胞、人工細胞外間質與生長信息等要素,在體外培養出人體組織或器官的科學。然而在植入生物體內後,這些以體外再生方式培養出來的組織往往會因為短期內宿主的血管新生現象不足,無法獲得充分的氧氣與養分而壞死。為了改善植入組織內部的血管新生情形,本論文研發出一項新的組織工程技術,以本實驗室先前開發的多孔性去細胞牛心包膜做為組織工程支架,並結合含有臍帶血間葉幹細胞(cord-blood mesenchymal stem cell, cbMSC)與人類臍帶靜脈內皮細胞(human umbilical vein endothelial cell, HUVEC)的細胞片,使支架能夠預血管化(prevascularization),加快移植後其內部的組織再生與血管新生。第一部份的實驗裡,我們利用體外培養的方式,評估cbMSC對HUVEC在管狀形成實驗(tube formation assay)中的影響,發現加入適量的cbMSC可有效延長管狀結構存在的時間。另一方面,我們以細胞片培養系統建立HUVEC/cbMSC細胞片,觀察細胞貼附及生長情形,並以免疫染色鑑定其細胞外間質的分佈,可知由降溫脫附而得到的細胞片可保存大量的細胞外間質。而經過數天的共培養後,cbMSC的α-smooth muscle actin表現量顯著上升,表示有部份的cbMSC可能開始朝平滑肌細胞分化。在體內實驗部份,我們將HUVEC/cbMSC細胞片夾附至多孔性去細胞牛心包膜支架後,植入老鼠背部的皮下組織,以探討該細胞片在生物體內對於血管新生與組織再生的影響。實驗結果顯示,HUVEC/cbMSC細胞片可以促進支架內部的血管新生,並誘導宿主細胞遷入,第十四天時大部分的孔洞皆已被細胞填滿;而未夾附細胞片的支架內部仍有許多空隙。上述體外與體內實驗的結果顯示,將牛心包膜支架夾入HUVEC/cbMSC細胞片,可有效加快移植後支架內部的血管新生,達到組織修復與再生的目的。


    摘要 I 目錄 II 圖索引 IV 第一章 緒論 1 1.1組織工程 1 1.2組織工程面臨的難題 1 1.3預血管化 1 1.4細胞片組織工程 3 1.5甲基纖維素 5 1.6去細胞生物組織 6 1.7研究動機與目的 7 第二章 體外實驗 9 2.1 研究目的 9 2.2 材料與方法 9 2.2.1 細胞培養 9 2.2.2 管狀形成實驗(Tube Formation Assay) 10 2.2.3 甲基纖維素水膠製備與細胞片的建立 10 2.2.4 免疫螢光染色 11 2.2.5 即時定量連鎖聚合酶反應(Real-Time Quantitative Polymerase Chain Reaction, qPCR) 12 2.3 實驗結果與討論 13 2.3.1 臍帶血間葉幹細胞與人類臍帶靜脈內皮細胞特性鑑定 13 2.3.2管狀形成實驗 (Tube Formation Assay) 14 2.3.3 建立HUVEC/cbMSC細胞片 17 2.3.4 細胞片特性鑑定 18 2.4 結論 21 第三章 體內實驗 22 3.1 研究目的 22 3.2 材料與方法 22 3.2.1 多孔性去細胞牛心包膜支架製備 22 3.2.2 建立預血管化組織工程支架 24 3.2.3 大鼠背部皮下植入 24 3.2.4 病理切片分析 25 3.3 實驗結果與討論 26 3.3.1 多孔性去細胞牛心包膜支架製備 26 3.3.2 動物實驗—取樣後巨觀觀察 28 3.3.3動物實驗—病理切片分析 29 3.4 結論 35 參考文獻 36

    1. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.
    2. Vacanti JP, Vacanti CA. The challenge of tissue engineering. In: Lanza RP, Langer R, Chick, WL, editors. Principles of Tissue Engineering. Austin, TX: Academic Press, 1997, pp. 1–6.
    3. Tabata Y. Necessity of drug delivery systems to tissue engineering. In: Park KD, Kwon IC, Yui N, Jeong SY, Park K, editors. Biomaterials and drug delivery toward new mellenium. Korea: Han Rim Won Publishing Co., 2000, pp. 531–44.
    4. Kofidis T, Akhyari P, Boublik J, Theodorou P, Martin U, Ruhparwar A, Fischer S, Eschenhagen T, Kubis HP, Kraft T, Leyh R, Haverich A. In vitro engineering of heart muscle: artificial myocardial tissue. J Thorac Cardiovasc Surg. 2002;124:63–9.
    5. Li RK, Yau TM, Weisel RD, Mickle DA, Sakai T, Choi A, Jia ZQ. Construction of a bioengineered cardiac graft. J Thorac Cardiovasc Surg. 2000;119:368–75.
    6. Freed LE, Vunjak-Novakovic G. Tissue culture reactors: chondrogenesis as a model system. In: Lanza RP, Langer R, Chick, WL, editors. Principles of Tissue Engineering. Austin, TX: Academic Press, 1997, pp. 151–65.
    7. Chapekar MS. Tissue engineering: challenges and opportunities. J Biomed Mater Res. 2000;53:617–20.
    8. Soker S, Machado M, Atala A. Systems for therapeutic angiogenesis in tissue engineering. World J Urol. 2000;18:10–8.
    9. Koike N, Fukumura D, Gralla O, Au P, Schechner JS, Jain RK. Tissue engineering: creation of long-lasting blood vessels. Nature. 2004;428:138–9.
    10. Nör JE, Peters MC, Christensen JB, Sutorik MM, Linn S, Khan MK, Addison CL, Mooney DJ, Polverini PJ. Engineering and characterization of functional human microvessels in immunodeficient mice. Lab Invest. 2001;81:453–63.
    11. Schechner JS, Nath AK, Zheng L, Kluger MS, Hughes CC, Sierra-Honigmann MR, Lorber MI, Tellides G, Kashgarian M, Bothwell AL, Pober JS. In vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse. Proc Natl Acad Sci U S A. 2000;97:9191–6.
    12. Staton CA, Stribbling SM, Tazzyman S, Hughes R, Brown NJ, Lewis CE. Current methods for assaying angiogenesis in vitro and in vivo. Int J Exp Pathol. 2004;85:233–48.
    13. Kubota Y, Kleinman HK, Martin GR, Lawley TJ. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol. 1988;107:1589–98.
    14. Au P, Tam J, Fukumura D, Jain RK. Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood. 2008;111:4551–8.
    15. Jain RK. Molecular regulation of vessel maturation. Nat Med. 2003;9:685–93.
    16. Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9:653–60.
    17. Hirschi KK, Rohovsky SA, D'A more PA. PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol. 1998;141:805–14.
    18. Melero-Martin JM, De Obaldia ME, Kang SY, Khan ZA, Yuan L, Oettgen P, Bischoff J. Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ Res. 2008;103:194–202.
    19. Chen X, Aledia AS, Ghajar CM, Griffith CK, Putnam AJ, Hughes CC, George SC. Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature. Tissue Eng Part A. 2009;15:1363–71.
    20. Okano T, Yamada N, Sakai H, Sakurai Y. A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J Biomed Mater Res. 1993;27:1243–51.
    21. Okano T, Yamada N, Okuhara M, Sakai H, Sakurai Y. Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. Biomaterials. 1995;16:297–303.
    22. von Recum HA, Kim SW, Kikuchi A, Okuhara M, Sakurai Y, Okano T. Novel thermally reversible hydrogel as detachable cell culture substrate. J Biomed Mater Res. 1998;40:631–9.
    23. Yamato M, Okuhara M, Karikusa F, Kikuchi A, Sakurai Y, Okano T. Signal transduction and cytoskeletal reorganization are required for cell detachment from cell culture surfaces grafted with a temperature-responsive polymer. J Biomed Mater Res. 1999;44:44–52.
    24. Masuda S, Shimizu T, Yamato M, Okano T. Cell sheet engineering for heart tissue repair. Adv Drug Deliv Rev. 2008;60;277–85.
    25. Shimizu T, Yamato M, Kikuchi A, Okano T. Cell sheet engineering for myocardial tissue reconstruction. Biomaterials. 2003;24:2309–16.
    26. Qiu Y, Park K. Environment-Sensitive Hydrogels for Drug Delivery. Adv Drug Deliv Rev. 2001;53:321–39.
    27. Liang HF, Hong MH, Ho RM, Chung CK, Lin YH, Chen CH, Sung HW. Novel method using a temperature-sensitive polymer (methylcellulose) to thermally gel aqueous alginate as a pH-sensitive hydrogel. Biomacromolecules. 2004;5:1917–25.
    28. Huang CC, Liao CK, Yang M, Chen CH, Hwang SM, Hung YW, Chang Y, Sung HW. A strategy for fabrication of a three-dimensional tissue construct containing uniformly distributed embryoid body-derived cells as a cardiac patch. Biomaterials. 2010;31:6218–27.
    29. Hay ED. Cell Biology of Extracellular Matrix, 2nd ed. New York: Plenum Press, 1991, pp. 45–71.
    30. Chang Y, Tsai CC, Liang HC, Sung HW. In vivo evaluation of cellular and acellular bovine pericardia fixed with a naturally occurring crosslinking agent (genipin). Biomaterials. 2002;23:2447–57.
    31. Chang Y, Lee MH, Liang HC, Hsu CK, Sung HW. Acellular bovine pericardia with distinct porous structures fixed with genipin as an extracellular matrix. Tissue Eng. 2004;10:881–92.
    32. Chang Y, Lai PH, Wei HJ, Lin WW, Chen CH, Hwang SM, Chen SC, Sung HW. Tissue regeneration observed in a basic fibroblast growth factor-loaded porous acellular bovine pericardium populated with mesenchymal stem cells. J Thorac Cardiovasc Surg. 2007;134:65–73.
    33. Chen CH, Tsai CC, Chen W, Mi FL, Liang HF, Chen SC, Sung HW. Novel living cell sheet harvest system composed of thermoreversible methylcellulose hydrogels. Biomacromolecules. 2006;7:736–43.
    34. Hwang NS, Varghese S, Elisseeff J. Controlled differentiation of stem cells. Adv Drug Deliv Rev. 2008;60:199–214.
    35. Chen S, Fitzgerald W, Zimmerberg J, Kleinman H, Margolis L. Cell-cell and cell-extracellular matrix interactions regulate embryonic stem cell differentiation. Stem Cells. 2007;25:553–61.
    36. Neff JA, Tresco PA, Caldwell KD. Surface modification for controlled studies of cell-ligand interactions. Biomaterials. 1999;20:2377–93.
    37. Sottile J, Hocking DC, Swiatek PJ. Fibronectin matrix assembly enhances adhesion-dependent cell growth. J Cell Sci. 1998;111:2933–43.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE