簡易檢索 / 詳目顯示

研究生: 蔡保萱
Pao Hsuan Tsai
論文名稱: 新型反鐵磁式耦合媒體之耦合強度提升與穩定層翻轉行為之研究
Study of Interlayer Exchange Coupling and Magnetization Switching Behavior in AFC media
指導教授: 賴志煌
Chih Huang Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 95
中文關鍵詞: 反鐵磁式耦合熱穩定性殘磁厚度積記錄層穩定層
外文關鍵詞: antiferromagnetically coupled, thermal stability, Mrt, recording layer, stabilizing layer
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在突破更高的記錄密度過程當中,降低記錄雜訊與提高熱穩定性為必須克服的兩大重點。提升傳統水平式記錄媒體的訊號雜訊比SNR的方法包括一、增加每個記錄元內的晶粒數(N1/2),即增加訊號強度,二、降低Mrt,即降低雜訊強度。兩種方法都朝降低磁能障KuV的方向努力,但將會劣化熱穩定性,即本身磁能無法克服熱能的擾動而造成磁矩反轉。全新設計的 AFC媒體利用雙層鐵磁性層耦合的效果,擁有較大的磁矩翻轉體積而克服超順磁的極限,且具有低Mrt、高矯頑場的特色而降低了記錄雜訊,成為新一代的記錄媒體。
    在本實驗中,除了調整間隔層Ru的厚度以得到AFC結構的最大交換場,更進一步討論界面耦合強度對磁性質表現的重要性,藉由引入純Co或調整成分來加強耦合強度以利穩定層的反轉,但結果卻發現,此種方法在增強交換場的同時可能伴隨著劣化主記錄層的矯頑場或延緩穩定層反轉時間的反效果。有基於此,以新的雙穩定層結構不但可維持強的界面耦合力,亦可抑制穩定層矯頑場的增加而使其更易於反轉,主記錄層的矯頑場也不至於因結構的改變而降低。


    Lower noise and higher thermal stability are two main key points in the process of achieving high areal density recording. The method of promoting SNR includes increasing the number of grain per bit to increase intensity of signal and decreasing Mrt to decrease noise. Both two methods improved SNR in the opinion of reducing energy barrier KuV and would reduced the ability to resist agitation from thermal energy and leaved the moments unstable. Antiferromagnetically coupled media was proposed in 1999 as a pathway for extending high-density longitudinal recording media while maintaining thermal stability. The important advantages of AFC media are: high signal resolution due to smaller Mrt and higher thermal stability due to larger grain volume.
    I have investigated that the interlayer exchange coupling constant J and exchange field are enhanced by conventional AFC media with Co interlayer on each side of Ru. But the Hc of upper layers decreases and Hc of lower layers increases with tCo, which is opposite to the useful properties of AFC media. To prevent the increase of Hc,LL due to inserting Co layer, I develop another different design of advanced AFC media structure. In the new structure, I retain the interlayer Co on the bottom side of Ru and insert a nonmagnetic layer such as Ru or CoCr with low content of Co into the interface of LL/Co to isolate interaction between Co interlayer and lower layer. Advantages of inserting NM layer into double stabilizing layers are as follows:higher interlayer exchange coupling, easier switching of lower layers, and lower net Mrt.

    摘要(中文)……………………………………………………………Ⅰ 摘要(英文)……………………………………………………………Ⅱ 致謝……………………………………………………………………Ⅲ 目錄……………………………………………………………………Ⅳ 圖目錄…………………………………………………………………Ⅶ 表目錄…………………………………………………………………IV 第一章 緒論……………………………………………………………1 1-1 前言………………………………………………………………1 1-2 磁記錄原理………………………………………………………1 1-2-1 讀寫機制……………………………………………………1 1-2-2 雜訊的成因……………………………………………………4 1-3 磁記錄媒體結構…………………………………………………5 1-4 水平式硬碟片的物理極限………………………………………6 第二章 文獻回顧與原理………………………………………………8 2-1 反鐵磁性耦合多層膜結構………………………………………8 2-2 反鐵磁性耦合的理論模型………………………………………8 2-3 AFC媒體中磁矩翻轉機制……………………………………13 2-4 各參數對AFC媒體性質之影響………………………………15 2-4-1成分的影響…………………………………………………15 2-4-2 厚度的影響…………………………………………………16 2-4-3 晶體異向性的影響…………………………………………17 2-5 提升界面耦合強度的方法………………………………………18 2-6 新型AFC媒體…………………………………………………20 2-6-1引入中間層之AFC媒體……………………………………20 2-6-2雙穩定層之AFC媒體………………………………………21 2-6-3 LM媒體+AFC媒體…………………………………………21 2-7 AFC媒體的雜訊來源……………………………………………22 2-8 熱穩定性的量測方法……………………………………………25 第三章 實驗設備與分析儀器……………………………………28 3-1 製程設備…………………………………………………………28 3-1-1 五靶濺鍍系統………………………………………………28 3-1-2 抽氣及真空量測設備………………………………………30 3-1-3 濺鍍的原理…………………………………………………31 3-1-4 電漿的作用原理……………………………………………31 3-2 樣品振盪磁測儀…………………………………………………33 3-3 X光薄膜分析技術………………………………………………34 3-4 穿透式電子顯微鏡………………………………………………36 3-4-1 電子束與樣品作用…………………………………………36 3-4-2 電子顯微鏡系統……………………………………………38 第四章 實驗規劃……………………………………………………41 4-1 研究動機…………………………………………………………41 4-2實驗目的………………………………………………………42 4-3實驗方法與步驟………………………………………………42 4-3-1 基板準備……………………………………………………42 4-3-2 薄膜成長……………………………………………………42 4-3-3 分析量測……………………………………………………43 第五章 實驗結果與討論……………………………………………64 5-1 單層記錄媒體之研究……………………………………………44 5-1-1 記錄層與穩定層之材料的選擇……………………………44 5-1-2 製程條件的調整……………………………………………45 5-2 Ru厚度的調整………………………………………………50 5-3 傳統的AFC媒體………………………………………………53 5-4 新型AFC媒體-Co的引入………………………………………57 5-4-1 摻雜或插入Co到記錄層或其界面…………………………58 5-4-2 摻雜或插入Co到穩定層或其界……………………………63 5-4-3 插入Co到Ru/LL與Ru/UL的界面…………………………67 5-4-4 摻雜Co至傳統單層記錄層媒體之研究……………………71 5-5 新型AFC媒體-分隔層的引入…………………………………74 5-5-1 以Ru為分隔層………………………………………………76 5-5-2以CoCr為分隔層……………………………………………78 5-6 AFC媒體之優越性………………………………………………82 5-6-1 殘磁厚度積…………………………………………………82 5-6-2 熱穩定性……………………………………………………83 第六章 結論…………………………………………………………87 附錄 參考文獻………………………………………………………88

    [1] J. J.-K. Chang,“Fabrication and Characterization of Low Noise Longitudinal Recording Media on Glass Ceramic Substrates”,
    Ph. D. Thesis in Mse.,Stanfor University,1997
    [2] R. Lawrence Comstock,“Introduction to Magnetism and Magnetic Recording”,Ch. 6 &Ch.8, J. Wiley&Sons, Inc.,1999
    [3] 張志高“簡介橫向式磁記錄媒體”,材料會訊,第六卷,第三期,1999
    [4] Alexander Taratorin,“Characterization of Magnetic Recording
    Systems”,Ch.1, Guzik Technical Enterprises,1996
    [5] T. Chen,“The Magnetic Properties of High Coercivity Metallic Thin
    Films and Their Effects on the Limit of Packing Density in Digital
    Recording”, IEEE Trans. Magn.,MAG-17,pp.1181-1191,1981
    [6] Nobuyuki Inaba and Masaaki Futamoto,“Effects of Pt and Ta
    Addition on Compositional Microstructure of CoCr-alloy Thin Film
    Media”, J. Appl. Phys.,vol.87, pp.6863-6865,2000
    [7] McHenry and Laughlin,“Nano-scale Materials Development”
    [8] S. E. McKinlay , N. Fussing, and R. Sinclair,“Microstructure
    Magnetic Property Relationships in CoCrPt Magnetic Thin
    Films”,IEEE Trans. Magn.,vol.32,pp.3587-3589,1996
    [9] K. M. Kemner and V. G. Harris,“Preferential Site distribution of
    Dilute Pt and Ta in CoCr-based films:An extended X-ray absorption
    fine structure study”, J. Appl. Phys.,vol.82, pp.2912-2916,1997
    [10] Akira Ishikawa, Robert Sinclair,“Effects of Pt Addition on the Magnetic and Crystallographic Properties of Co-Cr-Pt Thin-film Media”,JMMM,vol.152, pp.265-273,1996
    [11] J. Zou and B. Lu,“High Coercivity CoCrPt Films Achieved by Post-deposition Rapid Thermal Annealing”,J. Appl. Phys.,
    vol.87, pp.6869-6871,2000
    [12] H. J. Richter, R. Y. Ranjan,“Relaxation Effects in Thin Film Media and Their Consequences”,JMMM,vol.193, pp.213-219,1999
    [13] D. Weller and A. Moser,“Thermal Effects Limits in Ultrahigh-Density Magnetic Recording”,IEEE Trans. Magn.,
    vol.35,pp.4423-4439,1999
    [14] K. O’Grady and H. Laidler,“The Limits to Magnetic Recording Media Considerations”,JMMM,vol.200,pp.616-633,1999
    [15] M. Mikami and D. D. Djayaprawira,“Study on Increasing the Coercivity of CoCrPtB Media with High Pt content”,J. Appl. Phys.,vol.91, pp.7074-7076,2002
    [16] S. S. P. Parkin and, N. More, and K. P. Roche,“Oscillations in Exchange Coupling and Magnetoresistance in Metallic Superlattice Structures:Co/Ru, Co/Cr, and Fe/Cr”, Phys. Rev. Lett.,vol.64,
    pp.2304-2307,1990
    [17] S. S. P. Parkin and D. Mauri,“Direct Determination of the Ruderman-Kittel-Kasuya-Yosida Far-field Range Function in Ru”, Phys. Rev. B,vol.44,pp.7131-7134,1991
    [18] S. N. Piramanayagam and J. P. Wang,“Magnetic Properties and Switching Field Control of Antiferromagnetically Coupled Recording Media”,IEEE Trans. Magn.,vol.37,pp.1418-1420,
    2001
    [19] C. H. Hee and J. P. Wang,“Micromagnetic Simulation for Antiferromagnetically Coupling Recording Media”,IEEE Trans. Magn.,vol.37,pp.1515-1517,2001
    [20] K. Ball and H. A. M. van den Berg,“Thermal Stability of Antiferromagnetically Coupled Multilayers with Ru/Co and Cu/Co Interfaces”,J. Appl. Phys.,vol.90, pp.5228-5234,2001
    [21] B. A. Johy, IBM J. Res. Dev.,vol.42,pp.25,1998
    [22] H. J. Richter and Er. Girt,“Recording Potential of Antiferromagnetically Coupled Longitudinal Media”,IEEE Trans. Magn.,vol.37,pp.1411-1444,2001
    [23] Y. J. Wang and J. P. Wang,“Micromagnetic Simulation in two Antiferromagnetically Coupled Ferromagnetic Layers Separated by a Spacer”,J. Appl. Phys.,vol.89, pp.6994-6996,2001
    [24] Lijie Guan and Jian-Gang Zhu,“Recording Characteristics and Thermal Stability of AFC Thin Film Media”,IEEE Trans. Magn.,vol.37,pp.1452-1455,2001
    [25] J. P. Wang and Z. S. Shan,“Antiferromagnetically Coupling Effects on Energy Barrier and Reverrsal Properties of Recording Media”,IEEE Trans. Magn.,vol.37,pp.1445-1448,2001
    [26] D. T. Margulies and M. E. Schabes,“Interlayer Coupling and Magnetic Reversal of Antiferromagnetically Coupled Media”, Appl. Phys. Lett.,vol.80,pp.91,2002
    [27] Manfred E. Schabes, Eric E. Fullerton, and David T. Margulies,
    “Theory of Antiferromagnetically Coupled Magnetic Recording Media”,IEEE Trans. Magn.,vol.37,pp.1432-1434,2001
    [28] Olav Hellwig and D. T. Margulies,“Role of Boron on Grain Size and Magnetic Correlation Lengths in Recording media as Determined by Soft X-ray Scattering”, Appl. Phys. Lett.,vol.80,
    pp.1234-1236,2002
    [29] S. N. Piramanayagam and J. P. Wang,“Noise Reduction Mechanisms in Laminated Antiferromagnetically Coupled Recording Media”, Appl. Phys. Lett.,vol.79,pp.2423,2002
    [30] Eric E. Fullerton and D. T. Margulies,“Antiferromagnetically Coupled Magnetic Media Layers for Thermally Stable High Density Recording”, Appl. Phys. Lett.,vol.77,pp.3806,2000
    [31] Akihiro Inomata and E. N. Abarra,“Exchange Coupling Strength in Synthetic Ferrimagnetic media”,IEEE Trans. Magn.,vol.37,
    pp.1449-1451,2001
    [32] Zhengyong Zhang and Yong Chang Feng,“Magnetic Recording Demonstration Over 100 Gb/in2”,IEEE Trans. Magn.,vol.38,
    pp.1861-1866,2002
    [33] H. J. Richter and Er.Girt,“Simplified Analysis of Two-layer Antiferromagnetically Coupled Media”, Appl. Phys. Lett.,vol.80,
    pp.2529-2531,2002
    [34] Hwan-Soo Lee and David E. Laughlin,“Controlling the Magnetic Properties of CoCrPt Thin Films by Means of Thin Hexagonal-close-packed Intermediate Layers”,J. Appl. Phys.,
    vol.91, pp.7065-7067,2002
    [35] B. Ramamurthy Acharya and Antony Ajan,“Contribution of the Magnetic Anisotropy of the Stabilization Layer to the Thermal Stability of Synthetic Ferrimagnetic media ”, Appl. Phys. Lett.,
    vol.80, pp.85-87,2002
    [36] D. D. Djayaprawira and K. Komiyama,“Dependence of Exchange Bias Field on Composition of Stabilizing Layer and Sputtering Process in Synthetic Ferrimagnetic Coupled Media”,JMMM,
    vol.239, pp.396-398,2002
    [37] S. N. Piramanayagam, C. H. Hee, and J. P. Wang,“Role of Thermal Energy on the Magnetic Properties of Laminated Antiferromagnetically Coupled Recording Media ”,J. Appl. Phys.,vol.90, pp.3442-3449,2001
    [38] Eric E. Fullerton and D. T. Margulies,“Antiferromagnetically Coupled Magnetic Media Layers for Thermally Stable High Density Recording ”, Appl. Phys. Lett.,vol.77, pp.3806-3808,2000
    [39] A. Inomata and B. R. Acharya,“Advanced Synthetic Ferrimagnetic Media ”,J. Appl. Phys.,vol.91, pp.7671-7675,2002
    [40] H. Yamanaka and N. Inaba,“Enhancement of Exchange Coupling for Antiferromagnetically Coupled Media”,J. Appl. Phys.,vol.91, pp.8614-8616,2002
    [41] S. C. Oh and S. Y. Hong,“Enhanced Exchange Coupling Constant and Thermal Stability of Antiferromagnetically Coupled Media with Thin Co Interlayers”,J. Appl. Phys.,vol.91, pp.8617-8619,2002
    [42] Z. S. Shan and S. S. Malhotra,“Effects of Inserting Thin Co Layers on the Magnetic and Reversal Properties of Synthetic Antiferromagnetically Coupled Media”,J. Appl. Phys.,vol.91, pp.7682-7684,2002
    [43] A. Inomata and E. N. Abarra,“Improved Thermal Stability of Synthetic Ferrimagnetic Media with Enhanced Exchange Coupling Strength ”, Appl. Phys. Lett.,vol.80, pp.2719-2721,2002
    [44] T. Michalke and D. D. Djayaprawira,“Computaional Study in Synthetic Ferrimagnetic Coupled Media”,JMMM,vol.239,
    pp.22-24,2002
    [45] S. I. Pang, S. N. Piramanayagam and J. P. Wang,“Thermal Stability Investigations on Laminated Antiferromagnetically Coupled Media”,J. Appl. Phys.,vol.91, pp.8620-8622,2002
    [46] E. N. Abarra and A. Inomata,“Longitudinal Magnetic Recording Media with thermal Stabilization Layers”, Appl. Phys. Lett.,
    vol.77,pp.2581-2583,2000
    [47] Y. J. Wang and J. P. Wang,“Magnetization Reversal in Antiferromagnetically Coupled Magnetic Layers”,J. Appl. Phys.,vol.91, pp.9241-9245,2002
    [48] J. P. Wang and S. N. Piramanayagam,“Design of Laminated Antiferromagnetically Coupled Media for beyond 100 Gb/in2 Area Density”,J. Appl. Phys.,vol.91, pp.7694-7696,2002
    [49] S. I. Pang, S. N. Piramanayagam, and J. P. Wang,“Advanced Laminated Antiferromagnetically Coupled Recording Media with High Thermal Stability”, Appl. Phys. Lett.,vol.80,pp.616-618,
    2002
    [50] G. Choe and J. N. Zhou,“Recording Characteristics and Thermal
    Stability Comparisons between Antiferromagnetically Coupled and
    Conventional Media”,J. Appl. Phys.,vol.91, pp.7665-7670,2002
    [51] Er. Girt and H. J. Richter,“Different Designs and Limits of
    Longitudinal Magnetic Recording Media”,J. Appl. Phys.,vol.91,
    pp.7679-7681,2002
    [52] C. H. Hee and J. P. Wang,“Thermal Energy Consideration in Micromagnetic Simulation for Laminated Antiferromagnetically Coupled Recording Media”, Appl. Phys. Lett.,vol.79,
    pp.1646-1648,2001
    [53] D. T. Margulies and M. E. Schabes,“Interlayer Coupling and Magnetic Reversal of Antiferromagnetically coupled Media”, Appl. Phys. Lett.,vol.80,pp.91-93,2002
    [54] D. T. Margulies and A. Moser,“Thermal Activation and Reversal Time in Antiferromagnetically Coupled Media”, Appl. Phys. Lett.,vol.81,pp.4631-4633,2002
    [55] Andreas Moser and David T.,“Thermal Relaxtion in Antiferromagnetically Coupled Granular Magnetic Media”, Phys. Rev. B,vol.66,pp.092410,2002
    [56] S. I. Pang and S. N. Piramanayagam,“Advanced Laminated Antiferromagnetically Coupled Media with High Thermal Stability and Low Noise”,IEEE Trans. Magn.,vol.38,pp.1940-1942,
    2002
    [57] Sudhir S. Malhotra and Donald C. Stafford,“Effects of CrRu Underlayer on the Magnetic Recording and Thermal Stability Characteristics of CoCrPtTa Thin Film Media”,IEEE Trans. Magn.,vol.36,pp.2309-2311,2000
    [58] Michael Alex and David Wachenschwanz,“Thermal Effects and Recording Performance at High Recording Densities”,IEEE Trans. Magn.,vol.35,pp.2796-2801,1999
    [59] M. P. Sharrock,“Time Dependence of Switching Fields in Magnetic Recording Media”,J. Appl. Phys.,vol.76,
    pp.6413-6418,1994
    [60] Z. S. Shan and Yingfan Xu,“Moment Reversal Characterization of Thin Magnetic Film by VSM or AGFM”,IEEE Trans. Magn.,vol.37,pp.1944-1946,2001
    [61] H. J. Richter, S. Z. Wu and R. Malmhall,“Dynamic Coercivity Effects in Thin Film Media”,IEEE Trans. Magn.,vol.34,
    pp.1540-1542,1998
    [62] K. Yamanaka and T. Takayama,“Time Dependence of Remanence Coercivity and Medium Noise in Obliquely Evaporated Co Films”,JMMM,vol.145, pp.255-260,1995
    [63] J. Lohau and A. Moser,“Dynamic Coercivity Measurements of Antiferromagnetically Coupled Magnetic Media Layers”, Appl. Phys. Lett.,vol.78,pp.2748-2750,2001
    [64] Y. Yahisa and K. Kimoto,“Electron Spectroscopic Imaging Analysis of Compositional Inhomogeneity in CoCrTa Longitudinal Thin Film Media”,IEEE Trans. Magn.,vol.31,pp.2836-2838,
    1995
    [65] K. Tang and M. E. Schabes,“Magnetic Clusters, Intergranualar Exchange Interaction and Their Microstructural Basis in Thin Film Longitudinal Media”,IEEE Trans. Magn.,vol.33,pp.4074-4076,
    1997
    [66] Y. Shen and D. E. Laughlin,“Effects of Substrate Temperature on Magnetic Properties of CoCrTa/Cr Films”,IEEE Trans. Magn.,vol.28,pp.3261-3263,1992
    [67] S. L. Duan and J. O. Artman,“Effect of Sputtering Conditions, Annealing and the Microstructure of Cr Underlayer on the Magnetic Properties of CoNiCr/Cr Thin Films”,IEEE Trans. Magn.,vol.25,
    pp.3884-3886,1989
    [68] 丁懿萍“水平式硬碟片中底層摻雜對晶粒細化之影響”,碩士論文,2001
    [69] L. Zhou.,Z. Zhong“Interlayer Exchange Coupling versus ferromagnetic layer thickness in asymmetric Co/Ru/Co trilayer films”,J. Appl. Phys.,vol.76, pp.7078-7080,1994

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE