簡易檢索 / 詳目顯示

研究生: 曾韻華
Tseng, Yun-Hua
論文名稱: 利用超大型積體電路實現心電圖壓縮演算法
Electrocardiogram Compressions Using Very-Large-Scale Integration Technology Implementation
指導教授: 盧志文
Lu, Chih-Wen
口試委員: 陳元賀
Chen, Yuan-Ho
湯松年
Tang, Sung-Nian
陳竹一
Chen, Zhu-Yi
張大強
Chang, Da-Ciang
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 49
中文關鍵詞: 心電圖壓縮感知近精準壓縮演算法訊號雜訊比多導程壓縮法無損壓縮演算法有損壓縮演算法位元壓縮率
外文關鍵詞: electrocardiogram, compressed sensing, near-precise compressed algorithm, signal-to-noise ratio, multiple leads compression, lossless compression algorithm, lossy compression algorithm, bit compression ratio
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人體感測器系統是一種特殊的無線感測器網路,其中包括各種微型生物感測器,而這些生物感測器主要用於人體體內以持續監測生物醫學信號。為了能持續監測生物醫學信號,壓縮演算法對於降低生物信號資料量並進行長時間監測來說是非常重要。在這次的研究當中,我們提出了兩種心電圖信號壓縮演算法。第一種壓縮算法稱為自適應壓縮感知(CS)/近精確壓縮(NPC)壓縮算法,其設計集合了CS和NPC的優點,以實現高CR和高SNR的壓縮演算法。第二種設計是涉及多個導程壓縮的可穿戴式裝置,其裝置支持多個導程壓縮並允許用戶在無損壓縮(lossless)和有損壓縮(lossy)之間切換,並且可以控制位元壓縮率(BCR)和功率消耗以達到低成本的微型壓縮器。最後在這次的研究中利用TSMC0.18μm CMOS製程技術來實現晶片並驗證所提出方法的可行性以及效能評估。


    The body sensor system is a special class of wireless sensor network and comprises a variety of miniature biosensors. These biosensors are employed in the body to continuously monitor biomedical signals. In order to monitor biomedical signals continuously, compression algorithm is very important to reduce biomedical signal data for long time monitoring. In this study, we proposed two types compressions algorithm of Electrocardiogram (ECG) signal. First compression algorithm is referred to as the adaptive Compressed Sensing (CS)/ near-precise compressed (NPC) compression algorithm, which is designed integrating the advantages of CS and NPC to achieve high CR and high SNR. The second design of compressions algorithm is referred a wearable device involving multiple leads compression which supporting multiple leads compressed and allows users to switch between lossless and lossy compression, and the bits-compressed ratio (BCR) and power consumption can be controlled to achieve low-cost micro compressor. The effectiveness of the proposed approach was verified and evaluated by fabricating a chip using TSMC 0.18 μm CMOS technology.

    I.Introduction................1 II.Adaptive Integration of CS and NPC Compression Algorithm.....4 2.1 Proposed Architecture......5 2.1.1 Compressed Sensing......6 Measurement Matrix......7 Discrete Cosine Transform (DCT)......8 2.1.2 Near-Precise Compressed Algorithm......9 2.1.3 Adaptive Compression Algorithm Integrating CS and NPC......11 2.2 Simulation Comparison......13 Discussion......17 2.3 Chip Implementation......19 2.4 Brief Conclusion......20 III. Multiple Leads With a Switch Mode for Lossless and Lossy Compression......21 3.1 Proposed Architecture......22 3.2 Simulation Results......28 3.3 Chip Implementation......34 3.3.1 Measurement result......36 3.3.2 Comparison......37 3.4 Brief Conclusion......41 IV. Conclusion......41 V. Future work ......43 Reference ......44  

    [1]. WHO. Global Status Report on Noncommunicable Disease 2014; World Health Organization: Geneva, Switzerland, 2015.
    [2]. Richard E. Klabunde. Cardiovascular Physiology Concepts. [Online]. Available: http://www.cvphysiology.com/
    [3]. S.L. Chen, and J.G. Wang, “VLSI implementation of low-power cost-efficient lossless ECG encoder design for wireless healthcare monitoring application”, Electron. Lett., vol. 49, No.2, pp. 91–93, Jan. 2013.
    [4]. S.L. Chen , G.A. Luo, and T.L. Lin, “Efficient fuzzy-controlled and hybrid entropy coding strategy lossless ECG encoder VLSI design for wireless body sensor networks”, Electron. Lett., vol. 49, No.17, pp. 1058–1060, Aug. 2013.
    [5]. D. John, Z. Xiaoyang, C. Heng, and L. Yong, “A 3-lead ECG-on-chip with QRS detection & lossless compression for wireless sensors,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 63, No.12, pp. 1151–1155, Dec. 2016.
    [6]. Zhang, J.; Gu, Z.; Yu, Z.; Li, Y, “Energy-efficient ECG compression on wireless biosensors via minimal coherence sensing and weighted l1 minimization reconstruction.” IEEE J. Biomed. Health Inform., vol.19, no. 2,pp. 520–528, Mar. 2015.
    [7]. Y.C. Cheng, P.Y. Tsai, M.H. Huang, “Matrix-Inversion-Free Compressed Sensing with Variable Orthogonal Multi-Matching Pursuit Based on Prior Information for ECG Signals.” IEEE Tran. Biomed. Circuit Syst., vol.10, no 4, pp.864–873, Aug. 2016.
    [8]. D. Craven, B. McGinley, L. Kilmartin, M. Glavin, and E. Jones, “Adaptive Dictionary Reconstruction for Compressed Sensing of ECG Signals” IEEE J. Biomed. Health Inform. , vol.21, no 3, pp.645–654, Feb. 2016.
    [9]. A. Ravelomanantsoa, H. Rabah, and A. Rouane, “Compressed sensing: A simple deterministic measurement matrix and a fast recovery algorithm,” IEEE Trans. Instrum. Meas., vol. 64, no. 12, pp. 3405-3413, Dec. 2015.
    [10]. E.J. Candès, and M.B Wakin, “An introduction to Compressive Sampling, ” IEEE Signal Process. Mag, vol. 25, no. 2, pp. 21–30, Mar. 2008.
    [11]. J. Wang, S. Kwon, and B. Shim, “Generalized orthogonal matching pursuit,” IEEE Trans. Signal Process, vol. 60, no. 12, pp. 6202–6216, Dec. 2012.
    [12]. S. Sahoo, and A. Makur, “Signal recovery from random measurements via extended orthogonal matching pursuit,” IEEE Signal Process, vol. 63, no. 10, pp. 2572 - 2581, May. 2015.
    [13]. T. Blumensath, and M.E. Davies, “Normalized iterative hard thresholding: Guaranteed stability and performance,” IEEE J. Sel. Top. Signal Process. vol. 4, no. 2, pp. 298 - 309, Feb. 2010.
    [14]. T. Blumensath, and M.E. Davies, “Stagewise weak gradient pursuits,” IEEE Trans. Signal Process. vol. 57, no. 11, pp. 4333 - 4346, Nov. 2009.
    [15]. Y.H. Chen, and T.Y. Chang, “A high performance video where transform engine by using space-time scheduling strategy” IEEE Trans. VLSI Syst., vol. 20, no. 4, pp. 655 - 664, Apr. 2011.
    [16]. H. Lee, and K.M. Buckley, “ECG data compression using cut and align beats approach and 2-D transforms” IEEE Trans. Biomed. Eng. , vol. 46, no. 5, pp. 556 - 564, May 1999.
    [17]. MIT-BIH Arrhythmia Database. [Online]. Available: http://physionet.org/physiobank/database/mitdb/
    [18]. J.A. Tropp, and A.C. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit” IEEE Trans. Inf. Theory., vol. 53, no. 12, pp. 4655 - 4666, Dec 2007.
    [19]. Z. Zhang, T.P. Jung, S. Makeig, and B. Rao, “Compressed sensing for energy-efficient wireless telemonitoring of noninvasive fetal ECG via block sparse bayesian learning” IEEE Trans. Biomed. Eng., vol. 60, no. 2, pp. 300 - 309, Oct 2012.
    [20]. Z. Zhang, S. Wei, D. Wei, L. Li, F. Liu,and C. Liu, “Comparison of Four Recovery Algorithms Used in Compressed Sensing for ECG Signal Processing” In Proceedings of the Computing in Cardiology Conference (CinC), pp. 11 - 14, Sept 2016.
    [21]. C.E. Cummings, “Synthesis and scripting techniques for designing multi-asynchronous clock designs,” in Proc. Synopsys Users Group, 2001.
    [22]. Y.H. Tseng, Y.H. Chen, and C.W. Lu, “Adaptive Integration of the Compressed Algorithm of CS and NPC for the ECG Signal Compressed Algorithm in VLSI Implementation,” sensors, vol. 17, no. 10, Oct. 2017.
    [23]. E. Chua and W. C. Fang, “Mixed bio-signal lossless data compressor for portable brain-heart monitoring systems, ” IEEE Trans. Consum. Electron. vol. 57, no. 1, pp. 267-273, Feb. 2011.
    [24]. K.Li, Y. Pan, F. Chen, K.T. Cheng, and R. Huan, “Real-time lossless ECG compression for low-power wearable medical devices based on adaptive region prediction,” Electronics Letters, vol. 50, no. 25, pp. 1904–1906, Dec. 2014.
    [25]. C.A. Chen, S.L. Chen, H.Y. Huang, and C.H. Luo, ‘‘An efficient micro control unit with a reconfigurable filter design for wireless body sensor networks (WBSNs),’’ Sensors, vol. 12, no. 12, pp. 16211–16227, Nov. 2012.
    [26]. S.L. Chen, M.C. Tuan, T.K. Chi, and T.L Lin, “VLSI architecture of lossless ECG compression design based on fuzzy decision and optimization method for wearable devices,” Electron. Lett., vol. 51, no.18, pp. 1409–1411, Aug. 2015.
    [27]. Y.H. Tseng, Y.H. Chen, and C.W. Lu, “Multiple Leads With a Switch Mode for Lossless and Lossy Compression Using Very-Large-Scale Integration Technology,” IEEE.Access, vol. 6, Dec. 2018.
    [28]. S.L. Chen, M.C. Tuan, H. Y. Lee et al., “VLSI Implementation of a Cost-Efficient Micro Control Unit With an Asymmetric Encryption for Wireless Body Sensor Networks,” IEEE Access, vol. 5, pp. 4077-4086, Mar. 2017
    [29]. C. J. Deepu, X. Zhang, W. S. Liew, D. L. T. Wong, and Y. Lian, “An ECG-on-Chip with 535 nW/Channel Integrated Lossless Data Compressor for Wireless Sensors.,” IEEE J. Solid-State Circuits, vol. 49, no 11, pp. 2435 - 2448, Nov. 2014.
    [30]. G. B. Moody and R. G. Mark, “The impact of the MIT-BIH arrhythmia database,” IEEE Eng Med. Biol., vol. 20, pp. 45–50, May–Jun. 2001.
    [31]. S. Rigler, W. Bishop, and A. Kennings, “FPGA-based lossless data compression using Huffman and LZ77 algorithms,” in 2007 Proc. Can. Conf. Electr. Comput. Eng., 2007, pp. 1235–1238.
    [32]. A. Jas, J. Ghosh-Dastidar,M.-E. Ng, and N. A. Touba, “An efficient test vector compression scheme using selective Huffman coding,” IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. 22, no. 6, pp. 797–806, Jun. 2003.
    [33]. X. Zou, W.-S. Liew, L. Yao, and Y. Lian, “A 1 V 22 W 32-channel implantable EEG recording IC,” in 2010 IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2010, pp. 126–127.
    [34]. C. J. Deepu, X. Xu, X. Zou, L. Yao, and Y. Lian, “An ECG-on-chip for wearable cardiac monitoring devices,” in Proc. 5th IEEE Int. Symp. Electron. Des. Test Appl., 2010, pp. 225–228.
    [35]. A.P. Guerrero and C. Mailhes, “On the choice of an electromyogram data compression method,” in Proc. 19th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., vol. 4. Oct./Nov. 1997, pp. 1558–1561.
    [36]. N. Ahmed, P. J. Milne, and S. G. Harris, “Electrocardiographic data compression via orthogonal transforms,” IEEE Trans. Biomed. Eng., vol. BME-22, no. 6, pp. 484–487, Nov. 1975.
    [37]. D.L. Donoho, Y. Tsaig, I. Drori, and J.-L. Starck, “Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit,” IEEE Trans. Inf. Theory, vol. 58, no. 2, pp. 1094–1121, Feb. 2012.
    [38]. C.P. Liu and A. D. Poularikas, “A new subband coding technique using (JPEG) discrete cosine transform for image compression,” in Proc. 28th Southeastern Symp. Syst. Theory, Mar./Apr. 1996, pp. 317–321.
    [39]. G. Antoniol and P. Tonella, “EEG data compression techniques,” IEEE Trans. Biomed. Eng., vol. 44, no. 2, pp. 105–114, Feb. 1997.
    [40]. B. Shen, I. K. Sethi, and V. Bhaskaran, “DCT convolution and its application in compressed domain,” IEEE Trans. Circuits Syst. Video Technol., vol. 8, no. 8, pp. 947–952, Dec. 1998.
    [41]. J. Ma, “Improved iterative curvelet thresholding for compressed sensing and measurement,” IEEE Trans. Instrum. Meas., vol. 60, no. 1,pp. 126–136, Jan. 2011.
    [42]. J. Zhang et al., “An efficient and compact compressed sensing microsystem for implantable neural recordings,” IEEE Trans. Biomed. Circuits Syst., vol. 8, no. 4, pp. 485–496, Aug. 2014.
    [43]. N.Y. Yu and Y. Li, “Deterministic construction of Fourier-based compressed sensing matrices using an almost difference set,” EURASIP J. Adv. Signal Process., vol. 2013, no. 1, p. 155, 2013.
    [44]. Z. He, T. Ogawa, and M. Haseyama, “The simplest measurement matrix for compressed sensing of natural images,” in Proc. 17th IEEE Int. Conf. Image Process. (ICIP), Sep. 2010, pp. 4301–4304.
    [45]. H. Mamaghanian, N. Khaled, D. Atienza, and P. Vandergheynst, “Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes,” IEEE Trans. Biomed. Eng., vol. 58, no. 9, pp. 2456–2466, Sep. 2011.
    [46]. B. Bah and J. Tanner, “Vanishingly sparse matrices and expander graphs,with application to compressed sensing,” IEEE Trans. Inf. Theory, vol. 59, no. 11, pp. 7491–7508, Nov. 2013.
    [47]. W. Yan, Q. Wang, and Y. Shen, “Shrinkage-based alternating projection algorithm for efficient measurement matrix construction in compressive sensing,” IEEE Trans. Instrum. Meas., vol. 63, no. 5, pp. 1073–1084, May 2014.
    [48]. A. Bandeira, E. Dobriban, D. G. Mixon, and W. F. Sawin, “Certifying the restricted isometry property is hard,” IEEE Trans. Inf. Theory, vol. 59, no. 6, pp. 3448–3450, Jun. 2013.
    [49]. E.J. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans. Inf. Theory, vol. 51, no. 12, pp. 4203–4215, Dec. 2005.
    [50]. J. Fang, J. Li, Y. Shen, H. Li, and S. Li, “Super-resolution compressed sensing: An iterative reweighted algorithm for joint parameter learning and sparse signal recovery,” IEEE Signal Process. Lett., vol. 21, no. 6, pp. 761–765, Jun. 2014.
    [51]. H. Xu, N. Fu, L. Qiao, W. Yu, and X. Peng, “Compressive blind mixing matrix estimation of audio signals,” IEEE Trans. Instrum. Meas., vol. 63, no. 5, pp. 1253–1261, May 2014.
    [52]. S. Li and G. Ge, “Deterministic sensing matrices arising from near orthogonal systems,” IEEE Trans. Inf. Theory, vol. 60, no. 4, pp. 2291–2302, Apr. 2014.
    [53]. R. Yan, H. Sun, and Y. Qian, “Energy-aware sensor node design with its application in wireless sensor networks,” IEEE Trans. Instrum. Meas., vol. 62, no. 5, pp. 1183–1191, May 2013.

    QR CODE