研究生: |
黃裕瑄 Huang, Yu-Hsuan |
---|---|
論文名稱: |
介電泳細胞操控及定位晶片之設計與製作 Design and Fabrication of the Dielectrophoresis Microchip for Cell Manipulation |
指導教授: |
饒達仁
Yao, Da-Jeng |
口試委員: |
劉承賢
Liu, Cheng-Hsien 徐文祥 Hsu, Wensyang 范士岡 Fan, Shih-Kang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 卵母細胞 、精蟲 、介電泳 |
外文關鍵詞: | Oocyte, Sperm, Dielectrophoresis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一仿輸卵管之微流道介電泳晶片系統,為了降低對細胞的影響與破壞,本研究使用非接觸式介電泳力方式達到細胞的捕捉與研究。仿體外受精技術 (In Vitro Fertilization, IVF),將卵母細胞透過介電泳力定位於微流道內再者利用介電泳力捕抓更多的精蟲於卵母細胞的周圍來提升自然受精的機會,而將卵母細胞定位後在微流道內精蟲隨著流體皆能朝同一方向前進且卵母細胞周圍有更多的精蟲即能提高兩者自然授精的機率。
介電泳力主要透過非均勻電場產生密度不均的電場分佈,根據粒子與溶液間之介電係數(permittivity)與導電度(conductivity)差異,且在電場誘導產生不同誘導偶極矩,藉由溶液與粒子不同極化能力的特性,產生正或負介電泳效應,使粒子因受介電泳力的影響,驅動往高電場密度或低電場密度的特定位置,達到卵母細胞定位的效果。實驗中發現在其在高頻1MHz之下卵母細胞產生正介電泳力,進而可將卵母細胞捕抓在強電場區域上。此外利用數值模擬軟體先了解流道內高與低電場的分佈位置,以便了解在實驗中細胞產生正或負介電泳現象時會驅動到達之位置。
本實驗研究分為兩階段,第一階段完成絕緣結構微流道介電泳晶片系統製作與架設,主要在流道內進行細胞的位置操控,其中包含晶片設計及製作、介電泳電場模擬、介電泳細胞操控等結果。第二階段則承接第一階段的研究進一步改良成電極式介電泳晶片,來提升在流場下卵母細胞被定位以及精蟲與卵母細胞達到受精的目的。
This study presents an imitation of oviduct microfluidic dielectrophoresis chip system. In order to reduce the impact and destruction of cells, this study adopts dielectrophoresis force to manipulate the cell. Imitation of IVF (In Vitro Fertilization), the oocyte through the DEP force positioned in the microfluidic channel, and then we trap much more sperms around the oocyte by dielectrophoresis force to enhance the probability of natural fertilization. Therefore able to oocyte positioning in the microchannel and sperm with the fluid also go the same direction, so that the much more sperms around the oocyte can enhance the probability of natural fertilization.
Dielectrophoresis force primarily through non-uniform electric field induces the electric field distribution. According to the differences between of particle and solutions’ dielectric coefficient and conductivity induce difference dipole moment in the electric field. Different polarization characteristics of ability of particles and solution to generate positive or negative dielectrophoresis effect, the particles will be affected by the DEP force to move to the region with high or low electric field density to achieve the goal of oocyte positioning. The positive dielectrophoresis response of oocyte was exhibited with the frequency at 1 MHz, the oocyte will be affected by the DEP force to move to the region with high electric field density. To understand the position with high and low electric field distribution in microchannel, the numerical commercial software, CFDRC-ACE+, was used to know where the high electric field is.
This study is divided into two parts, the first to complete the insulator structure of microchannel dielectrophoresis chip system fabrication and setup. Mainly we manipulate cell in the microchannel, which contains the chip design and fabrication, dielectrophoresis electric field simulations, dielectrophoresis cell manipulation results. The second part improves the dielectrophoresis chip, which enhance the probability of oocyte position and sperm collision oocyte.
1. Howards SS (1995) CURRENT CONCEPTS - TREATMENT OF MALE-INFERTILITY. New England Journal of Medicine 332: 312-317.
2. Liu XY, Fernandes R, Jurisicova A, Casper RF, Sun Y (2010) In situ mechanical characterization of mouse oocytes using a cell holding device. Lab on a Chip 10: 2154-2161.
3. Liu XY, Fernandes R, Jurisicova A, Casper RF, Sun Y, et al. (2010) IN-SITU MECHANICAL CHARACTERIZATION OF MOUSE OOCYTES USING A CELL HOLDING DEVICE. Mems 2010: 23rd Ieee International Conference on Micro Electro Mechanical Systems, Technical Digest. pp. 947-950.
4. Han C, Zhang QF, Ma R, Xie L, Qiu TA, et al. (2010) Integration of single oocyte trapping, in vitro fertilization and embryo culture in a microwell-structured microfluidic device. Lab on a Chip 10: 2848-2854.
5. Kim K, Liu X, Zhang Y, Sun Y, Ieee (2008) MicroNewton force-controlled manipulation of biomaterials using a monolithic MEMS microgripper with two-axis force feedback. 2008 Ieee International Conference on Robotics and Automation, Vols 1-9. pp. 3100-3105.
6. Kim K, Liu X, Zhang Y, Sun Y (2008) Nanonewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback. Journal of Micromechanics and Microengineering 18.
7. Daunton R, Gallant A, Wood D, Kataky R (2011) A thermally actuated microgripper as an electrochemical sensor with the ability to manipulate single cells. Chemical Communications 47: 6446-6448.
8. Solano BP, Gallant AJ, Wood D (2009) Design and Optimisation of a Microgripper: Demonstration of Biomedical Applications Using the Manipulation of Oocytes; Bourouina T, Courtois B, Ghodssi R, Soma A, Yang H et al., editors. 61-65 p.
9. Zhang Y, Wang X, Wang Y, Zhu S, Gao BZ, et al. (2011) A simple dynamic optical manipulation technique for label-free detection of biological cells. Review of Scientific Instruments 82.
10. Tanaka Y, Tsutsui S, Ishikawa M, Kitajima H (2011) Hybrid optical tweezers for dynamic micro-bead arrays. Optics Express 19: 15445-15451.
11. Hwang H, Lee DH, Choi WJ, Park JK (2009) Enhanced discrimination of normal oocytes using optically induced pulling-up dielectrophoretic force. Biomicrofluidics 3.
12. Lee H, Purdon AM, Westervelt RM (2004) Micromanipulation of biological systems with microelectromagnets. Ieee Transactions on Magnetics 40: 2991-2993.
13. Lee H, Purdon AM, Westervelt RM (2004) Manipulation of biological cells using a microelectromagnet matrix. Applied Physics Letters 85: 1063-1065.
14. Gagnon Z, Mazur J, Chang HC (2010) Integrated AC electrokinetic cell separation in a closed-loop device. Lab on a Chip 10: 718-726.
15. Gao J, Sin MLY, Liu TT, Gau V, Liao JC, et al. (2011) Hybrid electrokinetic manipulation in high-conductivity media. Lab on a Chip 11: 1770-1775.
16. Ling SH, Lam YC, Kua CH (2011) Particle streaming and separation using dielectrophoresis through discrete periodic microelectrode array. Microfluidics and Nanofluidics 11: 579-591.
17. Burgarella S, Merlo S, Dell'Anna B, Zarola G, Bianchessi M (2010) A modular micro-fluidic platform for cells handling by dielectrophoresis. Microelectronic Engineering 87: 2124-2133.
18. Hatanaka H, Yasukawa T, Mizutani F (2011) Detection of Surface Antigens on Living Cells through Incorporation of Immunorecognition into the Distinct Positioning of Cells with Positive and Negative Dielectrophoresis. Analytical Chemistry 83: 7207-7212.
19. Kurakazu T, Kuribayashi-Shigetomi K, Matsunaga YT, Kimura H, Fujii T, et al. (2011) Selective retrieval of microparticles in microchambers using electrolytically generated bubbles for cell array applications. Sensors and Actuators B-Chemical 159: 229-233.
20. Choi W, Kim JS, Lee DH, Lee KK, Koo DB, et al. (2008) Dielectrophoretic oocyte selection chip for in vitro fertilization. Biomedical Microdevices 10: 337-345.
21. Cheng IF, Chung CC, Chang HC (2011) High-throughput electrokinetic bioparticle focusing based on a travelling-wave dielectrophoretic field. Microfluidics and Nanofluidics 10: 649-660.
22. Choi E, Kim B, Park J (2009) High-throughput microparticle separation using gradient traveling wave dielectrophoresis. Journal of Micromechanics and Microengineering 19.
23. Ino K, Ishida A, Inoue KY, Suzuki M, Koide M, et al. (2011) Electrorotation chip consisting of three-dimensional interdigitated array electrodes. Sensors and Actuators B-Chemical 153: 468-473.
24. Morganti E, Collini C, Cunaccia R, Gianfelice A, Odorizzi L, et al. (2011) A dielectrophoresis-based microdevice coated with nanostructured TiO(2) for separation of particles and cells. Microfluidics and Nanofluidics 10: 1211-1221.
25. Gallo-Villanueva RC, Jesus-Perez NM, Martinez-Lopez JI, Pacheco A, Lapizco-Encinas BH (2011) Assessment of microalgae viability employing insulator-based dielectrophoresis. Microfluidics and Nanofluidics 10: 1305-1315.
26. Jen CP, Chen TW (2009) Trapping of cells by insulator-based dielectrophoresis using open-top microstructures. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems 15: 1141-1148.
27. Jen CP, Chen TW (2009) Selective trapping of live and dead mammalian cells using insulator-based dielectrophoresis within open-top microstructures. Biomedical Microdevices 11: 597-607.
28. Jen CP, Huang CT, Shih HY (2010) Hydrodynamic separation of cells utilizing insulator-based dielectrophoresis. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems 16: 1097-1104.
29. Jen CP, Huang CT, Weng CH (2010) Focusing of biological cells utilizing negative dielectrophoretic force generated by insulating structures. Microelectronic Engineering 87: 773-777.
30. Pohl HA (1958) SOME EFFECTS OF NONUNIFORM FIELDS ON DIELECTRICS. Journal of Applied Physics 29: 1182-1188.
31. H. A. Pohl (1978) Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields (Cambridge Monographs on Physics).
32. Slentz BE, Penner NA, Regnier FE (2002) Capillary electrochromatography of peptides on microfabricated poly(dimethylsiloxane) chips modified by cerium(IV)-catalyzed polymerization. Journal of Chromatography A 948: 225-233.
33. Ho CT, Lin RZ, Chang WY, Chang HY, Liu CH (2006) Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap. Lab on a Chip 6: 724-734.
34. Chiou TJ, Chu ST, Tzeng WF, Huang YC, Liao CJ (2008) Arsenic trioxide impairs spermatogenesis via reducing gene expression levels in testosterone synthesis pathway. Chemical Research in Toxicology 21: 1562-1569.
35. Kawai Y, Hata T, Suzuki O, Matsuda J (2006) The relationship between sperm morphology and in vitro fertilization ability in mice. Journal of Reproduction and Development 52: 561-568.
36. Oliveira H, Spano M, Santos C, Pereira MD (2009) Adverse effects of cadmium exposure on mouse sperm. Reproductive Toxicology 28: 550-555.