簡易檢索 / 詳目顯示

研究生: 楊杰穎
Yang, Chieh-Ying
論文名稱: 四倍頻太赫茲信號源設計
Design of Quadruple-Push Terahertz Signal Source
指導教授: 劉怡君
Liu, Yi-Chun
口試委員: 郭建男
Kou, Chien-Nan
李俊興
Li, Chun-Hsing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 英文
論文頁數: 93
中文關鍵詞: 太赫茲四倍頻四相位震盪器
外文關鍵詞: Terahertz, Quaruple-push, QVCO
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 太赫茲(THz)頻段(0.3-3 THz)近幾年在新興應用如影像、超高速無線通訊、感測和分子光譜學領域快速發展。隨著先進CMOS製程持續發展,低成本和高集成度的太赫茲系統已經可以成為未來工業應用以及消費端產品。然而,在這些新興應用中,由於CMOS製程中電晶體較低的崩潰電壓、高頻下電晶體模型的不準確性、電晶體的非線性模型以及電晶體最高操作頻率f_max的限制,實現一個高輸出功率和低相位雜訊的太赫茲訊號源還是一個困難的課題。為了解決此問題,目前實現的方法分為諧波震盪器和倍頻器串列。諧波震盪器為利用電晶體的非線性度來產生高於f_max的高次諧波訊號,而震盪器本身是操作在基頻訊號。此論文採用倍頻器為基底的諧波震盪器,探討兩個基於四倍頻操作的太赫茲震盪器,利用基頻的I/Q訊號透過四倍頻器的濾波特性將低倍諧波訊號濾掉,在輸出端產生四倍頻THz訊號。第一個work為實作在28nm,操作在560-GHz的四倍頻震盪器,震盪器架構選擇為Colpitts oscilliator,因為寄生電容較小,此架構震盪器可以操作在更高頻。基頻為140-GHz的四相位Colpitts震盪器和四倍頻器,輸出達到-16.3 dBm的輸出功率,並經由on-chip antenna將訊號輸出。第二個work是實作在90nm的一個注入鎖定四倍頻震盪器,由一個四相位注入鎖定的84-GHz Series-coupled QVCO、3級放大器以及四倍頻器所組成,輸出端為336-GHz的四倍頻訊號。注入鎖定的輸入訊號源可進一步實作一個on-chip的PLL,可以使輸出訊號的相位雜訊更低。


    Terahertz (THz) band (0.3-3 THz) has gained much more interest in the past few years for emerging applications such as imaging, ultra-high speed wireless communication, sensing and molecular spectroscopy. With CMOS technology keeps scaling down, low cost and high integration THz system is available for future industrial applications and consumer products. However, in these applications, realizing a high output power and low noise signal source still remains challenging due to low breakdown voltage, transistor model inaccuracy, nonlinearity modeling for maximum harmonic output power and insufficient transistor f_max limitation in CMOS technology. To overcome these difficulties, two common approaches are utilized in generating THz frequency signal: harmonic VCO and multiplier chain. Harmonic VCO method utilized device nonlinearity to generate higher-order harmonic signal beyond fmax with oscillator operating at fundamental frequency below transistor frequency limitation, which is achievable in advanced CMOS technology. This thesis proposed two works based on quadruple-push technique with a fundamental quadrature VCO and two cascaded frequency doublers. By utilizing the nature of the quadruple-push harmonic generator with I/Q fundamental input, only the fourth harmonic THz signal is present at the output while the lower harmonic signals (fo, 2fo, 3fo) are rejected due to out of phase signal. The first work focus on 560-GHz output frequency, including a 140-GHz quadrature Colpitts VCO and two cascaded frequency doublers which achieved -16.3 dBm peak output power and 15.6-GHz tuning range. The second work is an injection-locked quadruple-push 336-GHz harmonic VCO, including an injection-locked Series-QVCO, 3-stage cascode amplifier and quadruple-push harmonic generator, which could be further scaled to a 2x2 THz source array injection-locked by an on-chip PLL for frequency synchronization between array elements.

    摘要 i Abstract ii Contents iv List of Figures vi List of Tables xi Chap 1 Introduction 1 1.1 Introduction to Terahertz Technology 1 1.2 Challenges in Silicon-based THz Electronics 4 Chap 2 RF Circuit Design in CMOS technology 6 2.1 Active Device 6 2.2 Passive Device 8 2.2.1 Inductor 9 2.2.2 Capacitor 15 Chap 3 Terahertz Signal Generation 17 3.1 N-push Multiplier 19 3.2 N-phase Oscillator 21 3.3 MM-Wave VCO Design 22 3.3.1 LC Cross-Coupled Oscillator 23 3.3.2 Colpitts Oscillator 34 3.3.3 Quadrature Oscillator Topology and Design 37 3.4 Frequency Doubler 43 Chap 4 560-GHz Signal Source in 28nm CMOS 45 4.1 Schematic 45 4.2 Simulation Result 48 Chap 5 336-GHz Signal Source in 90nm CMOS 55 5.1 Architecture 55 5.2 Circuit Design Consideration 56 5.2.1 Injection-locked Series-QVCO 56 5.2.2 Injection circuit 64 5.2.3 Quadrupler ( Two cascaded frequency doubler) 69 5.2.4 3-stage Differential Cascode Amplifier 74 5.3 Measurement setup and results 82 5.4 Stability simulation and measurement of 84-GHz amplifier including external components 85 Chap 6 Conclusion 89 Reference 90

    [1] U. R. Pfeiffer, E. Ojefors, A. Lisauskas and H. G. Roskos, "Opportunities for silicon at mmWave and Terahertz frequencies," 2008 IEEE Bipolar/BiCMOS Circuits and Technology Meeting, Monteray, CA, 2008, pp. 149-156.
    [2] P. H. Siegel, “Terahertz technology,” IEEE Transactions on Microwave Theory Techniques, Vol. 50, No.3, pp. 910–928, Mar. 2002.
    [3] M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photon. ,vol. 1, pp. 97–105, 2007.
    [4] John Federici and Lothar Moeller, “Review of terahertz and subterahertz wireless communications,” Journal of Applied Physics, Vol.107, 2010.
    [5] H. Sherry et al., "A 1kpixel CMOS camera chip for 25fps real-time terahertz imaging applications," 2012 IEEE International Solid-State Circuits Conference, San Francisco, CA, 2012, pp. 252-254.
    [6] H. Aghasi, A. Cathelin and E. Afshari, "A 0.92-THz SiGe Power Radiator Based on a Nonlinear Theory for Harmonic Generation," in IEEE Journal of Solid-State Circuits, vol. 52, no. 2, pp. 406-422, Feb. 2017.
    [7] T. Schneider, A. Wiatrek, S. Preussler, M. Grigat and R. P. Braun, "Link Budget Analysis for Terahertz Fixed Wireless Links," in IEEE Transactions on Terahertz Science and Technology, vol. 2, no. 2, pp. 250-256, March 2012.
    [8] A. M. Niknejad, Electromagnetics for High-Speed Analog and Digital Communication Circuits. Cambridge: Cambridge University Press, 2007.
    [9] Y. Tousi and E. Afshari, "A High-Power and Scalable 2-D Phased Array for Terahertz CMOS Integrated Systems," in IEEE Journal of Solid-State Circuits, vol. 50, no. 2, pp. 597-609, Feb. 2015.
    [10] Y. Tsividis. Operation and Modeling of the MOS Transistor. New York: McGraw-Hill, 1987.
    [11] H. Fukui, "Design of microwave GaAs MESFETs for broad-band low-noise amplifiers", IEEE Trans. Microw. Theory Tech., vol. MTT-27, no. 7, pp. 643-650, Jul. 1979.
    [12] http://www.itrs2.net/
    [13] D. Dubuc, T. Tournier, I., Telliez, T. Parra, C. Boulanger, and J. Graffeuil, “High quality factor and high self-resonant frequency monolithic inductor for millimeter-wave Si-based IC’s,” IEEE MTT-S Digest, pp.193 – 196, June 2002.
    [14] Yu Cao et al., "Frequency-independent equivalent-circuit model for on-chip spiral inductors," in IEEE Journal of Solid-State Circuits, vol. 38, no. 3, pp. 419-426, Mar 2003.
    [15] T. Chi, J. Luo, S. Hu and H. Wang, "A Multi-Phase Sub-Harmonic Injection Locking Technique for Bandwidth Extension in Silicon-Based THz Signal Generation," in IEEE Journal of Solid-State Circuits, vol. 50, no. 8, pp. 1861-1873, Aug. 2015
    [16] D. B. Leeson, "A simple model of feedback oscillator noise spectrum", Proc. IEEE, vol. 54, no. 2, pp. 329-330, Feb. 1966.
    [17] A. Hajimiri and T. H. Lee, "A general theory of phase noise in electrical oscillators," in IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb 1998.
    [18] J. C. Nallatamby, M. Prigent, M. Camiade and J. Obregon, "Phase noise in oscillators - Leeson formula revisited," in IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 4, pp. 1386-1394, Apr 2003.
    [19] P. Andreani, A. Bonfanti, L. Romano and C. Samori, "Analysis and design of a 1.8-GHz CMOS LC quadrature VCO," in IEEE Journal of Solid-State Circuits, vol. 37, no. 12, pp. 1737-1747, Dec 2002.
    [20] S. L. J. Gierkink, S. Levantino, R. C. Frye, C. Samori and V. Boccuzzi, "A low-phase-noise 5-GHz CMOS quadrature VCO using superharmonic coupling," in IEEE Journal of Solid-State Circuits, vol. 38, no. 7, pp. 1148-1154, July 2003.
    [21] Stephen A. Mass, Nonlinear Microwave and RF Circuits, Artech House, Inc. 2003.
    [22] K. W. Tang, S. Leung, N. Tieu, P. Schvan and S. P. Voinigescu, "Frequency Scaling and Topology Comparison of Millimeter-wave CMOS VCOs," 2006 IEEE Compound Semiconductor Integrated Circuit Symposium, San Antonio, TX, 2006, pp. 55-58.
    [23] C. Lee, T. Yao, A. Mangan, K. Yau, M. A. Copeland and S. P. Voinigescu, "SiGe BiCMOS 65-GHz BPSK transmitter and 30 to 122 GHz LC-varactor VCOs with up to 21% tuning range," IEEE Compound Semiconductor Integrated Circuit Symposium, 2004., 2004, pp. 179-182.
    [24] I. J. Bahl, and P. Bhartia, Microstrip Antennas, Artech House, Dedham, MA, 1980
    [25] K. J. Koh and G. M. Rebeiz, "0.13-μm CMOS Phase Shifters for X-, Ku-, and K-Band Phased Arrays," in IEEE Journal of Solid-State Circuits, vol. 42, no. 11, pp. 2535-2546, Nov. 2007.
    [26] T. Yao et al., "Algorithmic Design of CMOS LNAs and PAs for 60-GHz Radio," in IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp. 1044-1057, May 2007.
    [27] S. P. Voinigescu et al., "A Study of SiGe HBT Signal Sources in the 220–330-GHz Range," in IEEE Journal of Solid-State Circuits, vol. 48, no. 9, pp. 2011-2021, Sept. 2013.
    [28] E. Ojefors, B. Heinemann and U. R. Pfeiffer, "Active 220- and 325-GHz Frequency Multiplier Chains in an SiGe HBT Technology," in IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 5, pp. 1311-1318, May 2011
    [29] A Fully Integrated 320 GHz Coherent Imaging Transceiver in 130 nm SiGe BiCMOS," in IEEE Journal of Solid-State Circuits, vol. 51, no. 11, pp. 2596-2609, Nov. 2016.
    [30] K. Sengupta and A. Hajimiri, "A 0.28 THz Power-Generation and Beam-Steering Array in CMOS Based on Distributed Active Radiators," in IEEE Journal of Solid-State Circuits, vol. 47, no. 12, pp. 3013-3031, Dec. 2012.
    [31] J. Al-Eryani et al., "A Wideband 341-386 GHz Transmitter in SiGe BiCMOS Technology," 2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Austin, TX, 2016, pp. 1-4.
    [32] Z. Hu, M. Kaynak and R. Han, "High-Power Radiation at 1 THz in Silicon: A Fully Scalable Array Using a Multi-Functional Radiating Mesh Structure," in IEEE Journal of Solid-State Circuits, vol. 53, no. 5, pp. 1313-1327, May 2018.
    [33] D. Shim, D. Koukis, D. J. Arenas, D. B. Tanner and K. O. Kenneth, "553-GHz signal generation in CMOS using a quadruple-push oscillator," 2011 Symposium on VLSI Circuits - Digest of Technical Papers, Honolulu, HI, 2011, pp. 154-155.
    [34] D. Huang et al., "Terahertz CMOS Frequency Generator Using Linear Superposition Technique," in IEEE Journal of Solid-State Circuits, vol. 43, no. 12, pp. 2730-2738, Dec. 2008.

    QR CODE