簡易檢索 / 詳目顯示

研究生: 何沛霖
He, Pei-Lin He
論文名稱: 支鏈鹽橋對於crammer調節半胱胺酸蛋白酶之影響及蛋白特性分析
Salt bridge Impact on Drosophila melanogaster Crammer for Cathepsin Regulation
指導教授: 呂平江
Lyu, Ping-Chiang
口試委員: 呂平江
蘇士哲
楊裕雄
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 62
中文關鍵詞: 支鏈鹽橋長期記憶
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 果蠅的crammer,是一個具有79個胺基酸的小蛋白,其功能已經被證實是藉由調節半胱胺酸蛋白酶 (cathepsin) 的活性,進而促使果蠅形成長期記憶.。雖然crammer結構在日前已被發表,但crammer詳細的調控機制目前尚未被明確地指出。因此,本實驗利用點突變的方式結合上生物化學與生物物理等方法,探討salt bridge對於crammer抑制半胱胺酸蛋白酶所造成的功能性影響與結構之間的關聯。藉由丙氨酸取代salt bridge之胺基酸,其中E8A、R28A與R29A三個突變蛋白,會造成蛋白穩定性顯著的降低以及使得crammer喪失正確的折疊能力,進而導致功能性的大幅缺失。根據結構分析,Glu8的改變會造成helix-1的結構不穩定,此外,Arg29的替換也會讓原本會與Arg29作用的Ser5、Glu6與Glu62喪失交互作用的引力,因而造成在helix-1和helix-2間所產生出來的hydrophobic core不穩定,而導致crammer整體結構折疊不完美,進一步影響抑制功能。Arg28處於salt bridge network中心位置,而其有固定helix-2與helix-4方位的功能,並且可讓crammer的C端結構擁有正確的位相,使其能夠有效抑制半胱胺酸蛋白酶。根據此研究,我們對於crammer上關鍵性胺基酸的探討,將增加同類型的抑制劑開發潛力,並且能夠有助於對抗阿茲海默症的治療。


    Drosophila melanogaster crammer is a small peptide with 79 amino acids, which involves in long-term memory formation through cathepsin regulation. Although the 3D structure of crammer has been reported, the detailed regulatory mechanism in fruit fly is still unclear. In this study, a site directed mutagenesis approach coupled with biochemical and biophysical methods were used to explore potential roles of the salt bridges in crammer. Alanine substitutions at E8A, Arg28 and Arg29 apparently reduce the thermal stability and alter the protein folding, thus losing their cathepsin inhibitory activities. According to structural analysis, the substitution at Glu8 causes the structural instability of helix-1. Moreover, Arg29 makes close contacts with Asp6 and Asp25 to stabilize helices 1 and 2. These two helices act as an essential scaffold for maintaining the hydrophobic core. Moreover, Arg28 lies on the center of a tri-salt bridge network (Glu24-Arg28-Glu67). This network connects helices 2 and 4 to stabilize the C-terminal orientation of crammer, and to maintain the inhibitory potency of crammer. Accordingly, we have already identified the hot spot residues in crammer, which allows us to expand the potential application for pharmaceutical therapy in the Alzheimer’s disease.

    Contents Abstract 1 中文摘要 2 Abbreviations 3 Chapter 1. Introduction 4 1.1 Long-term memory 4 1.2 Propeptide-like cysteine protease inhibitor-crammer 4 1.3 Cathepsin of cysteine proteases 5 1.4 Functionally and structurally critical charged residues of crammer 6 1.5 The theme of the thesis 7 Chapter 2. Materials and Methods 9 2.1 Construction of recombinant crammer mutant 9 2.2 Protein expression and purification 9 2.3 MALDI-TOF MASS analysis 10 2.4 Tricine SDS PAGE 11 2.5 Quantification of protein concentration 12 2.6 Expression of fly procathepsin B 12 2.7 Isolation and solubilization of procathepsin B inclusion bodies 13 2.8 In vitro folding and autoprocessing of proCTSB 13 2.9 Enzymatic assay of cathepsin B 14 2.10 Quantification of cathepsin B concentration by E-64 14 2.11 Circular Dichroism Spectroscopy 15 2.12 Fluorescence measurements 16 2.13 NMR spectroscopy 16 2.14 Molecular modeling and docking 17 Chapter 3. Results and Discussions 18 3.1 Expression and purification of mutant crammer 18 3.2 The effect of salt bridges forming in crammer on inhibitory potency for Drosophila melanogaster cathepsin B 18 3.3 Study the secondary structure of crammer and mutants by using circular dichroism 19 3.4 Intrinsic fluorescence properties of crammer and double mutant proteins 21 3.5 Discussion on the 1H-15N HSQC spectra of double mutant proteins separately 23 Chapter 4. Conclusions 26 Figures and Tables 27 Figure 1. Multiple sequence alignment of crammer and related proteins 27 Figure 2. The residues involve in salt bridges of crammer 28 Figure 3. Experimental strategies 29 Figure 4. The schematic diagram of the plasmid Crammer-pAED4 30 Figure 5. Standard curve for quantifying protein concentration 31 Figure 6. Expression of crammer and mutants 32 Figure 7. HPLC profile for purification of mutant proteins 33 Figure 8. Mass spectra of mutant proteins 34 Figure 9. Progress curves for inhibitory activity of crammer against cathepsin B 35 Figure 10. Resistant analysis of crammer and mutant proteins against cathepsin B in different concentrations. 36 Figure 11. C72S based double mutants at pH 7 37 Figure12. Far-UV CD spectroscopy examines the secondary structure of crammer and mutant proteins at pH 4 and pH 7 38 Figure 13. The impact of salt bridges on protein structural stability in crammer by thermal denaturation experiments 39 Figure 14. Protein packing analysis by intrinsic fluorescence experiment 40 Figure 15. Superposition of 1H-15N HSQC spectra were recorded at 20℃ and pH 6 41 Figure 16. The overlay of the 1H-15N-HSQC spectra for C72S and double mutant proteins 42 Figure 17. The effect of salt bridge mutants through the 1H-15N-HSQC spectra 43 Figure 18. The importance of Arg28 and Glu67 44 Figure 19. Hydrophobic core in crammer 45 Table 1. Compare the identity of cathepsin B of D. melanogaster with cathepsin of other species 46 Table 2. Sequence of oligonucleotide used for site directed mutagenesis 47 Table 3. Observed molecular weight of mutant proteins correlated with the theoretical molecular weights 48 Table 4. The conclusion of functional assay, protein stability and conformational transition in wild-type crammer and mutants 49 Appendixes 50 Appendix 1. The structural change of crammer in the1H-15N-HSQC spectra38 50 Appendix 2. 1H-15N HSQC of C72S at pH 4 and pH 6 52 Appendix 3. The salt bridge network of procathepsin S55. 53 Reference 54

    1 Tully, T. Physiology of mutations affecting learning and memory in Drosophila--the missing link between gene product and behavior. Trends in neurosciences 14, 163-164 (1991).
    2 Davis, R. L. Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Annual review of neuroscience 28, 275-302, doi:10.1146/annurev.neuro.28.061604.135651 (2005).
    3 Tully, T., Preat, T., Boynton, S. C. & Del Vecchio, M. Genetic dissection of consolidated memory in Drosophila. Cell 79, 35-47 (1994).
    4 Yin, J. C. et al. Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79, 49-58 (1994).
    5 Comas, D., Petit, F. & Preat, T. Drosophila long-term memory formation involves regulation of cathepsin activity. Nature 430, 460-463, doi:10.1038/nature02726 (2004).
    6 Waddell, S. & Quinn, W. G. Flies, genes, and learning. Annual review of neuroscience 24, 1283-1309, doi:10.1146/annurev.neuro.24.1.1283 (2001).
    7 Krashes, M. J. & Waddell, S. Rapid consolidation to a radish and protein synthesis-dependent long-term memory after single-session appetitive olfactory conditioning in Drosophila. The Journal of neuroscience : the official journal of the Society for Neuroscience 28, 3103-3113, doi:10.1523/JNEUROSCI.5333-07.2008 (2008).
    8 Deshapriya, R. M. et al. Drosophila CTLA-2-like protein (D/CTLA-2) inhibits cysteine proteinase 1 (CP1), a cathepsin L-like enzyme. Zoological science 24, 21-30 (2007).
    9 Kurata, M. et al. Bombyx cysteine proteinase inhibitor (BCPI) homologous to propeptide regions of cysteine proteinases is a strong, selective inhibitor of cathepsin L-like cysteine proteinases. Journal of biochemistry 130, 857-863 (2001).
    10 Vernet, T. et al. Processing of the papain precursor. The ionization state of a conserved amino acid motif within the Pro region participates in the regulation of intramolecular processing. The Journal of biological chemistry 270, 10838-10846 (1995).
    11 Delaria, K. et al. Inhibition of cathepsin L-like cysteine proteases by cytotoxic T-lymphocyte antigen-2 beta. The Journal of biological chemistry 269, 25172-25177 (1994).
    12 Denizot, F. et al. Novel structures CTLA-2 alpha and CTLA-2 beta expressed in mouse activated T cells and mast cells and homologous to cysteine proteinase proregions. European journal of immunology 19, 631-635, doi:10.1002/eji.1830190409 (1989).
    13 Fan, T. J., Han, L. H., Cong, R. S. & Liang, J. Caspase family proteases and apoptosis. Acta biochimica et biophysica Sinica 37, 719-727 (2005).
    14 Chapman, H. A., Riese, R. J. & Shi, G. P. Emerging roles for cysteine proteases in human biology. Annual review of physiology 59, 63-88, doi:10.1146/annurev.physiol.59.1.63 (1997).
    15 Berti, P. J. & Storer, A. C. Alignment/phylogeny of the papain superfamily of cysteine proteases. Journal of molecular biology 246, 273-283, doi:10.1006/jmbi.1994.0083 (1995).
    16 Khan, A. R. & James, M. N. Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein science : a publication of the Protein Society 7, 815-836, doi:10.1002/pro.5560070401 (1998).
    17 Podobnik, M., Kuhelj, R., Turk, V. & Turk, D. Crystal structure of the wild-type human procathepsin B at 2.5 A resolution reveals the native active site of a papain-like cysteine protease zymogen. Journal of molecular biology 271, 774-788, doi:10.1006/jmbi.1997.1218 (1997).
    18 Cygler, M. & Mort, J. S. Proregion structure of members of the papain superfamily. Mode of inhibition of enzymatic activity. Biochimie 79, 645-652 (1997).
    19 Nishimura, Y., Kawabata, T. & Kato, K. Identification of latent procathepsins B and L in microsomal lumen: characterization of enzymatic activation and proteolytic processing in vitro. Archives of biochemistry and biophysics 261, 64-71 (1988).
    20 Rowan, A. D., Mason, P., Mach, L. & Mort, J. S. Rat procathepsin B. Proteolytic processing to the mature form in vitro. The Journal of biological chemistry 267, 15993-15999 (1992).
    21 Keppler, D. et al. Tumor progression and angiogenesis: cathepsin B & Co. Biochemistry and cell biology = Biochimie et biologie cellulaire 74, 799-810 (1996).
    22 Yamashima, T. Implication of cysteine proteases calpain, cathepsin and caspase in ischemic neuronal death of primates. Progress in neurobiology 62, 273-295 (2000).
    23 Pope, A. & Nixon, R. A. Proteases of human brain. Neurochemical research 9, 291-323 (1984).
    24 Mohamed, M. M. & Sloane, B. F. Cysteine cathepsins: multifunctional enzymes in cancer. Nature reviews. Cancer 6, 764-775, doi:10.1038/nrc1949 (2006).
    25 Rafn, B. et al. ErbB2-driven breast cancer cell invasion depends on a complex signaling network activating myeloid zinc finger-1-dependent cathepsin B expression. Molecular cell 45, 764-776, doi:10.1016/j.molcel.2012.01.029 (2012).
    26 Withana, N. P. et al. Cathepsin B inhibition limits bone metastasis in breast cancer. Cancer research 72, 1199-1209, doi:10.1158/0008-5472.CAN-11-2759 (2012).
    27 Szpaderska, A. M. & Frankfater, A. An intracellular form of cathepsin B contributes to invasiveness in cancer. Cancer research 61, 3493-3500 (2001).
    28 Chwieralski, C. E., Welte, T. & Buhling, F. Cathepsin-regulated apoptosis. Apoptosis : an international journal on programmed cell death 11, 143-149, doi:10.1007/s10495-006-3486-y (2006).
    29 Turk, D., Podobnik, M., Kuhelj, R., Dolinar, M. & Turk, V. Crystal structures of human procathepsin B at 3.2 and 3.3 Angstroms resolution reveal an interaction motif between a papain-like cysteine protease and its propeptide. FEBS letters 384, 211-214 (1996).
    30 Coulombe, R. et al. Structure of human procathepsin L reveals the molecular basis of inhibition by the prosegment. The EMBO journal 15, 5492-5503 (1996).
    31 Cygler, M. et al. Structure of rat procathepsin B: model for inhibition of cysteine protease activity by the proregion. Structure 4, 405-416 (1996).
    32 Wiederanders B., K. G., & Schilling K. Function of propeptide parts in cysteine proteases. Current Protein and Peptide Science 4, 309-326, doi:10.2174/1389203033487081 (2003).
    33 Wiederanders, B. Structure-function relationships in class CA1 cysteine peptidase propeptides. Acta biochimica Polonica 50, 691-713, doi:035003691 (2003).
    34 Muntener, K. et al. Folding competence of N-terminally truncated forms of human procathepsin B. The Journal of biological chemistry 280, 11973-11980, doi:10.1074/jbc.M413052200 (2005).
    35 Tao, K., Stearns, N. A., Dong, J., Wu, Q. L. & Sahagian, G. G. The proregion of cathepsin L is required for proper folding, stability, and ER exit. Archives of biochemistry and biophysics 311, 19-27 (1994).
    36 Hanewinkel, H., Glossl, J. & Kresse, H. Biosynthesis of cathepsin B in cultured normal and I-cell fibroblasts. The Journal of biological chemistry 262, 12351-12355 (1987).
    37 Groves, M. R., Coulombe, R., Jenkins, J. & Cygler, M. Structural basis for specificity of papain-like cysteine protease proregions toward their cognate enzymes. Proteins 32, 504-514 (1998).
    38 Tseng, T. S. et al. A molten globule-to-ordered structure transition of Drosophila melanogaster crammer is required for its ability to inhibit cathepsin. The Biochemical journal 442, 563-572, doi:10.1042/BJ20111360 (2012).
    39 Guay, J., Falgueyret, J. P., Ducret, A., Percival, M. D. & Mancini, J. A. Potency and selectivity of inhibition of cathepsin K, L and S by their respective propeptides. European journal of biochemistry / FEBS 267, 6311-6318 (2000).
    40 Bosshard, H. R., Marti, D. N. & Jelesarov, I. Protein stabilization by salt bridges: concepts, experimental approaches and clarification of some misunderstandings. Journal of molecular recognition : JMR 17, 1-16, doi:10.1002/jmr.657 (2004).
    41 Wimley, W. C., Gawrisch, K., Creamer, T. P. & White, S. H. Direct measurement of salt-bridge solvation energies using a peptide model system: implications for protein stability. Proceedings of the National Academy of Sciences of the United States of America 93, 2985-2990 (1996).
    42 Kajander, T. et al. Buried charged surface in proteins. Structure 8, 1203-1214 (2000).
    43 Kumar, S. & Nussinov, R. Salt bridge stability in monomeric proteins. Journal of molecular biology 293, 1241-1255, doi:10.1006/jmbi.1999.3218 (1999).
    44 Begg, G. E. & Speicher, D. W. Mass spectrometry detection and reduction of disulfide adducts between reducing agents and recombinant proteins with highly reactive cysteines. Journal of biomolecular techniques : JBT 10, 17-20 (1999).
    45 Schagger, H. Tricine-SDS-PAGE. Nature protocols 1, 16-22, doi:10.1038/nprot.2006.4 (2006).
    46 Smith, P. K. et al. Measurement of protein using bicinchoninic acid. Analytical biochemistry 150, 76-85 (1985).
    47 D'Alessio K, J., McQueney, M. S., Brun, K. A., Orsini, M. J. & Debouck, C. M. Expression in Escherichia coli, refolding, and purification of human procathepsin K, an osteoclast-specific protease. Protein expression and purification 15, 213-220, doi:10.1006/prep.1998.1013 (1999).
    48 Tobbell, D. A. et al. Identification of in vitro folding conditions for procathepsin S and cathepsin S using fractional factorial screens. Protein expression and purification 24, 242-254, doi:10.1006/prep.2001.1573 (2002).
    49 Pauly, T. A. et al. Specificity determinants of human cathepsin s revealed by crystal structures of complexes. Biochemistry 42, 3203-3213, doi:10.1021/bi027308i (2003).
    50 Barrett, A. J. et al. L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. The Biochemical journal 201, 189-198 (1982).
    51 Chen, R., Li, L. & Weng, Z. ZDOCK: an initial-stage protein-docking algorithm. Proteins 52, 80-87, doi:10.1002/prot.10389 (2003).
    52 Schneidman-Duhovny, D., Inbar, Y., Nussinov, R. & Wolfson, H. J. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic acids research 33, W363-367, doi:10.1093/nar/gki481 (2005).
    53 Burstein, E. A., Vedenkina, N. S. & Ivkova, M. N. Fluorescence and the location of tryptophan residues in protein molecules. Photochemistry and photobiology 18, 263-279 (1973).
    54 Yuan, T., Weljie, A. M. & Vogel, H. J. Tryptophan fluorescence quenching by methionine and selenomethionine residues of calmodulin: orientation of peptide and protein binding. Biochemistry 37, 3187-3195, doi:10.1021/bi9716579 (1998).
    55 Kaulmann, G., Palm, G. J., Schilling, K., Hilgenfeld, R. & Wiederanders, B. The crystal structure of a Cys25 -> Ala mutant of human procathepsin S elucidates enzyme-prosequence interactions. Protein science : a publication of the Protein Society 15, 2619-2629, doi:10.1110/ps.062401806 (2006).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE