研究生: |
楊秉鴻 Yang, Bing-Hong |
---|---|
論文名稱: |
溶劑引發聚甲基丙烯酸甲酯/石墨烯複合材料之裂紋成長:紫外光照射之影響 Solvent-Induced Crack Growth of PMMA/FGs Composites: Effect of Ultraviolet Irradiation |
指導教授: |
李三保
Lee, Sanboh 張守一 Chang, Shou-Yi |
口試委員: |
鄒若齊
葉鴻欽 侯春看 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 221 |
中文關鍵詞: | 聚甲基丙烯酸甲酯 、官能基化石墨烯 、裂紋成長 、玻璃轉化溫度 、光降解 、活化能 |
外文關鍵詞: | PMMA, Functionalized graphene sheets, crack growth, glass transition temperature, photodegradation, activation energy |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石墨烯/聚合物複合材料已開發成輕量化的導電材料,而聚甲基丙烯酸甲酯由於其尺寸穩定性及生物相容性,已被普遍應用於電化學中複合材料的支撐膜。近幾年來,聚甲基丙烯酸甲酯/官能基化石墨烯(PMMA/FGs)複合材料則廣泛運用在各項領域,其中包含電子材料中的感測器、生醫材料中的人工關節等,因此研究聚合物複合材料的結構缺陷對於聚合物複合材料的應用具有實際意義,如工作環境以及使用壽命等。本實驗中分別比較了不同紫外光劑量的PMMA/FGs先浸泡50 ℃的甲醇,然後浸泡在2-乙基己醇(2EA)、環己醇和正丁醇所引起的裂縫成長,以及無預先浸泡甲醇,直接浸在50 ℃以上的2-乙基己醇、環己醇和正丁醇的情形。
PMMA/FGs複合材料的本質黏度和玻璃轉化溫度都會隨著石墨烯濃度的增加而升高,其結果乃因石墨烯阻止高分子鏈移動。然而經紫外光照射後都會降低,其結果是因為紫外光照射後,PMMA斷鏈導致分子量降低。此外,FTIR結果推測溶劑進入複合材料是擴散行為。
已預先浸泡甲醇的PMMA/FGs複合材料中的裂紋面密度和單一裂紋的生長速率隨著2EA和環己醇的浸泡時間和溫度增加而增加,其裂紋成長的機制為甲醇的析出所主導,浸入正丁醇的FGs/PMMA複合材料在50℃以下時有最大的裂紋面密度,然而在50℃以上則會最小,原因在於正丁醇會再次擴散進到材料中,這時裂紋成長反而由正丁醇所主導,正丁醇溶劑在50℃以下時有最快的單一裂紋成長速率,50℃以上則最慢,活化能的大小在50 ℃以下時依序是2EA>環己醇>正丁醇。
在沒有浸泡甲醇的情況下,PMMA/FGs複合材料中的裂紋面密度和單一裂紋的生長速率都較有浸泡甲醇的小且慢,浸泡環己醇的PMMA/FGs複合材料有最大的裂紋面密度及最快的單一裂紋生長速率;浸泡在正丁醇的PMMA/FGs複合材料則最小且最慢,而活化能的大小依序是正丁醇>2EA>環己醇,且2EA、環己醇及正丁醇擴散進入FGs/PMMA複合材料的混合熱為吸熱反應,其值因不同材料而有所不同。
增加石墨烯的比例會增加裂縫成長的活化能,而增加紫外光的劑量則會降低裂縫成長的活化能。對於相同的預切複合材料而言,癒合區域的裂紋成長速率會比未裂區域更快,原因是癒合區域已被刀片預先切開,癒合後仍有殘留應力存在,使得其裂紋傳播速率更快。
另外,雖然裂紋面密度的大小跟溶劑溫度、浸泡時間、及複合材料FGs含量有關,但拉伸試驗呈現破裂應力只跟裂紋密度有關,與產生裂紋的參數無關。
FGs/polymer composite has been developed for lightweight and electrically conductive materials. Poly (methyl methacrylate) (PMMA) has been used as a supporting film for carbonaceous materials in electrochemistry due to its high dimensional stability and biocompatibility. In recent years, PMMA/FGs composite materials have been widely used in various fields, including electronic sensors and artificial joints, etc. Therefore, studying structural defects in polymer composites is practically significant on the application on polymer composites, such as service environment and life time. In this thesis, we investigated the solvent-induced crack growth of PMMA/FGs composites irradiated with different doses of UV light immersed in methanol at 50 °C for 25 minutes, and then immersed in 2-ethylhexanol (2EA), cyclohexanol and 1-butanol. Besides, we compared the situations of immersion in 2-ethylhexanol, cyclohexanol and 1-butanol at temperatures greater than 50 °C without pre-soaking methanol and soaking methanol at temperatures below 50 °C.
Both the intrinsic viscosity and glass transition temperature of PMMA/FGs composites increase with the increase of FGs concentration, since FGs prevent the movement of polymer chains. The intrinsic viscosity and glass transition temperature of PMMA/FGs composites reduce with UV dose. UV irradiation causes photodegradation and leads to polymer chain scission and molecular weight reduction. In addition, FTIR results show that the mechanism of solvent entering the composite is a diffusion.
The areal density of crack length and the single crack growth rate for PMMA/FGs composites (methanol treatment) increased with the immersion time and temperatures of 2EA and cyclohexanol. At the temperatures lower than 50 ℃, the FGs/PMMA composites immersed in 1-butanol had the largest areal density of crack length among the three solvents, which was minimum at the temperatures greater than 50 ℃. The 1-butanol solvent has the fastest single crack growth rate below 50 ℃, and the slowest above 50 ℃. The areal crack density is assumed to be proportional to amount of 2EA, cyclohexanol, and 1-butanol. The activation energy follows the sequence from large to small is 2EA>cyclohexanol>1-butanol.
In the case of no immersion in methanol, the areal density of crack length and single crack growth rate for PMMA/FGs composites are smaller and slower, respectively, than that of methanol treatment. The PMMA/FGs composites immersed in cyclohexanol have the largest crack density and the fastest single crack growth rate; the PMMA/FGs composite soaked in 1-butanol had the smallest and the slowest, respectively. We observed that the areal crack density is linearly proportional to the amount of 2EA, cyclohexanol, and 1-butanol. The activation energy follows the sequence from large to small is 1-butanol>2EA>cyclohexanol.
Increasing the FGs concentration reduces the areal density of crack length and single crack growth rate, but increasing the UV dose increases the areal density of crack length and single crack growth rate.
In addition, the areal density of crack length is related to the solvent temperature, immersion time, and FGs content. However, the tensile test shows that the fracture stress is only proportional to the crack density.
[1] S. Napolitano, E. Glynos, N.B. Tito, Glass transition of polymers in bulk, confined geometries, and near interfaces, Reports on Progress in Physics 80(3) (2017) 036602.
[2] U. Ali, K.J.B.A. Karim, N.A. Buang, A review of the properties and applications of poly (methyl methacrylate)(PMMA), Polymer Reviews 55(4) (2015) 678-705.
[3] H. Hashim, N. Adam, N. Zaki, Z. Mahmud, C. Said, M. Yahya, A. Ali, Natural rubber-grafted with 30% poly (methylmethacrylate) characterization for application in lithium polymer battery, 2010 International Conference on Science and Social Research (CSSR 2010), IEEE, 2010, pp. 485-488.
[4] L.-H. Lee, W.-C. Chen, High-refractive-index thin films prepared from trialkoxysilane-capped poly (methyl methacrylate)− titania materials, Chemistry of Materials 13(3) (2001) 1137-1142.
[5] A. Ali, M. Yahya, H. Bahron, R. Subban, Electrochemical studies on polymer electrolytes based on poly (methyl methacrylate)-grafted natural rubber for lithium polymer battery, Ionics 12(4) (2006) 303-307.
[6] J.J. Shah, J. Geist, L.E. Locascio, M. Gaitan, M.V. Rao, W.N. Vreeland, Surface modification of poly (methyl methacrylate) for improved adsorption of wall coating polymers for microchip electrophoresis, Electrophoresis 27(19) (2006) 3788-3796.
[7] A.C. Henry, T.J. Tutt, M. Galloway, Y.Y. Davidson, C.S. McWhorter, S.A. Soper, R.L. McCarley, Surface modification of poly (methyl methacrylate) used in the fabrication of microanalytical devices, Analytical Chemistry 72(21) (2000) 5331-5337.
[8] J. Kost, R. Langer, Responsive polymeric delivery systems, Advanced Drug Delivery Reviews 64 (2012) 327-341.
[9] A. Isha, N.A. Yusof, M. Ahmad, D. Suhendra, W.M.Z.W. Yunus, Z. Zainal, A chemical sensor for trace V (V) ion determination based on fatty hydroxamic acid immobilized in polymethylmethacrylate, Sensors and Actuators B: Chemical 114(1) (2006) 344-349.
[10] D.T. Beruto, R. Botter, M. Fini, The effect of water in inorganic microsponges of calcium phosphates on the porosity and permeability of composites made with polymethylmethacrylate, Biomaterials 23(12) (2002) 2509-2517.
[11] M. Shi, J.D. Kretlow, P.P. Spicer, Y. Tabata, N. Demian, M.E. Wong, F.K. Kasper, A.G. Mikos, Antibiotic-releasing porous polymethylmethacrylate/gelatin/antibiotic constructs for craniofacial tissue engineering, Journal of Controlled Release 152(1) (2011) 196-205.
[12] S. Mishra, G. Sen, Microwave initiated synthesis of polymethylmethacrylate grafted guar (GG-g-PMMA), characterizations and applications, International Journal of Biological Macromolecules 48(4) (2011) 688-694.
[13] C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene: the new two‐dimensional nanomaterial, Angewandte Chemie International Edition 48(42) (2009) 7752-7777.
[14] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321(5887) (2008) 385-388.
[15] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano Letters 8(3) (2008) 902-907.
[16] P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Thermal transport measurements of individual multiwalled nanotubes, Physical Review Letters 87(21) (2001) 215502.
[17] A. Ward, D. Broido, D.A. Stewart, G. Deinzer, Ab initio theory of the lattice thermal conductivity in diamond, Physical Review B 80(12) (2009) 125203.
[18] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Communications 146(9-10) (2008) 351-355.
[19] Z.-S. Wu, W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, C. Jiang, H.-M. Cheng, Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation, ACS nano 3(2) (2009) 411-417.
[20] Y. Sun, G. Shi, Graphene/polymer composites for energy applications, Journal of Polymer Science Part B: Polymer Physics 51(4) (2013) 231-253.
[21] D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nature Nanotechnology 3(2) (2008) 101-105.
[22] X. Huang, X. Qi, F. Boey, H. Zhang, Graphene-based composites, Chemical Society Reviews 41(2) (2012) 666-686.
[23] Y.-J. Wan, L.-C. Tang, D. Yan, L. Zhao, Y.-B. Li, L.-B. Wu, J.-X. Jiang, G.-Q. Lai, Improved dispersion and interface in the graphene/epoxy composites via a facile surfactant-assisted process, Composites Science and Technology 82 (2013) 60-68.
[24] Y. Geng, M.Y. Liu, J. Li, X.M. Shi, J.K. Kim, Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites, Composites Part A: Applied Science and Manufacturing 39(12) (2008) 1876-1883.
[25] G. Gonçalves, P.A. Marques, A. Barros-Timmons, I. Bdkin, M.K. Singh, N. Emami, J. Grácio, Graphene oxide modified with PMMA via ATRP as a reinforcement filler, Journal of Materials Chemistry 20(44) (2010) 9927-9934.
[26] T. Ramanathan, A. Abdala, S. Stankovich, D. Dikin, M. Herrera-Alonso, R. Piner, D. Adamson, H. Schniepp, X. Chen, R. Ruoff, Functionalized graphene sheets for polymer nanocomposites, Nature Nanotechnology 3(6) (2008) 327-331.
[27] S.N. Tripathi, P. Saini, D. Gupta, V. Choudhary, Electrical and mechanical properties of PMMA/reduced graphene oxide nanocomposites prepared via in situ polymerization, Journal of Materials Science 48(18) (2013) 6223-6232.
[28] M. Bleszynski, M. Kumosa, Aging resistant TiO2/silicone rubber composites, Composites Science and Technology 164 (2018) 74-81.
[29] S. Al-Malaika, Oxidative degradation and stabilisation of polymers, International Materials Reviews 48(3) (2003) 165-185.
[30] J. Pospıšil, Z. Horák, J. Pilař, N. Billingham, H. Zweifel, S. Nešpůrek, Influence of testing conditions on the performance and durability of polymer stabilisers in thermal oxidation, Polymer Degradation and Stability 82(2) (2003) 145-162.
[31] E. Yousif, R. Haddad, Photodegradation and photostabilization of polymers, especially polystyrene, SpringerPlus 2(1) (2013) 1-32.
[32] P. Delobelle, L. Guillot, C. Dubois, L. Monney, Photo-oxidation effects on mechanical properties of epoxy matrixes: Young's modulus and hardness analyses by nano-indentation, Polymer Degradation and Stability 77(3) (2002) 465-475.
[33] F.A. Bottino, A.R. Cinquegrani, G. Di Pasquale, L. Leonardi, A. Pollicino, Chemical modifications, mechanical properties and surface photo-oxidation of films of polystyrene (PS), Polymer Testing 23(4) (2004) 405-411.
[34] C. Wochnowski, M.S. Eldin, S. Metev, UV-laser-assisted degradation of poly (methyl methacrylate), Polymer Degradation and Stability 89(2) (2005) 252-264.
[35] M.R. Islam, S. Tanveer, C.-C. Chen, Modeling swelling behavior of hydrogels in aqueous organic solvents, Chemical Engineering Science 242 (2021) 116744.
[36] K. Hattori, J.-I. Horinaka, T. Takigawa, Swelling behavior of a polyacrylamide gel in water/acetonitrile mixtures across the solvent phase separation temperatures, Colloid and Polymer Science 298(4) (2020) 435-440.
[37] M. Kawagoe, M. Nakanishi, J. Qiu, M. Morita, Growth and healing of a surface crack in poly (methyl methacrylate) under case II diffusion of methanol, Polymer 38(24) (1997) 5969-5975.
[38] L. Xu, H. Zhang, Y. Lu, L. An, T. Shi, The effects of solvent polarity on the crystallization behavior of thin π-conjugated polymer film in solvent mixtures investigated by grazing incident X-ray diffraction, Polymer 190 (2020) 122259.
[39] Y.-F. Chuang, H.-C. Wu, F. Yang, T.-J. Yang, S. Lee, Cracking and healing in poly (methyl methacrylate): effect of solvent, Journal of Polymer Research 24(1) (2017) 1-11.
[40] C.B. Lin, S. Lee, K.S. Liu, Methanol‐Induced crack healing in poly (methyl methacrylate), Polymer Engineering & Science 30(21) (1990) 1399-1406.
[41] S. Basu, E. van der Giessen, A thermo-mechanical study of mode I, small-scale yielding crack-tip fields in glassy polymers, International Journal of Plasticity 18(10) (2002) 1395-1423.
[42] H. Brown, V. Deline, P. Green, Evidence for cleavage of polymer chains by crack propagation, Nature 341(6239) (1989) 221-222.
[43] K.R. Chandran, Mechanical fatigue of polymers: A new approach to characterize the SN behavior on the basis of macroscopic crack growth mechanism, Polymer 91 (2016) 222-238.
[44] A. Gent, H. Hirakawa, Solvent‐induced crack growth in rubbery block polymers, Journal of Polymer Science Part A‐2: Polymer Physics 6(8) (1968) 1481-1492.
[45] G. Miller, S. Visser, A. Morecroft, On the solvent stress‐cracking of polycarbonate, Polymer Engineering & Science 11(2) (1971) 73-82.
[46] A. Reimschuessel, Y.J. Kim, Stress-cracking of nylons induced by zinc chloride solutions, Journal of Materials Science 13(2) (1978) 243-252.
[47] K.-T. Yang, Y.-C. Yuan, H. Ouyang, F. Yang, S. Lee, Solvent-induced crack growth in poly (methyl methacrylate)/multiwalled carbon nanotube composites, Materials Chemistry and Physics 291 (2022) 126717.
[48] P. Palmero, Structural ceramic nanocomposites: a review of properties and powders’ synthesis methods, Nanomaterials 5(2) (2015) 656-696.
[49] M.L. Huggins, The viscosity of dilute solutions of long-chain molecules. IV. Dependence on concentration, Journal of the American Chemical Society 64(11) (1942) 2716-2718.
[50] A.A. Abdel-Wahab, S. Ataya, V.V. Silberschmidt, Temperature-dependent mechanical behaviour of PMMA: Experimental analysis and modelling, Polymer Testing 58 (2017) 86-95.
[51] T. Caykara, O. Güven, UV degradation of poly (methyl methacrylate) and its vinyltriethoxysilane containing copolymers, Polymer Degradation and Stability 65(2) (1999) 225-229.
[52] Y.-J. Chen, J. Li, N. Hadjichristidis, J.W. Mays, Mark-Houwink-Sakurada coefficients for conventional poly (methyl methacrylate) in tetrahydrofuran, Polymer Bulletin 30(5) (1993) 575-578.
[53] G.-Y. Li, J. Koenig, FTIR mapping: Polymer swelling and solvent segregation in benzene/cyclohexane-polyisoprene rubber system, Journal of Elastomers & Plastics 36(1) (2004) 33-44.
[54] X. Zhang, M. Han, S. Chen, L. Bao, L. Li, W. Xu, Azo addition to exfoliated graphene: a facile and high yield route to functionalized graphene, RSC Advances 3(39) (2013) 17689-17692.
[55] M. Pantoja-Castro, J. Pérez-Robles, H. González-Rodríguez, Y. Vorobiev-Vasilievitch, H. Martínez-Tejada, C. Velasco-Santos, Synthesis and investigation of PMMA films with homogeneously dispersed multiwalled carbon nanotubes, Materials Chemistry and Physics 140(2-3) (2013) 458-464.
[56] J. Crank, The mathematics of diffusion, 2nd ed, Oxford University Press, Oxford, England (1979) p.48.
[57] A.F. Barton, Solubility parameters, Chemical Reviews 75(6) (1975) 731-753.
[58] E.C. Lima, A.A. Gomes, H.N. Tran, Comparison of the nonlinear and linear forms of the van't Hoff equation for calculation of adsorption thermodynamic parameters (∆ S° and∆ H°), Journal of Molecular Liquids 311 (2020) 113315.
[59] B.P. van Milligen, P. Bons, B.A. Carreras, R. Sanchez, On the applicability of Fick's law to diffusion in inhomogeneous systems, European journal of physics 26(5) (2005) 913.
[60] S. Sain, D. Ray, A. Mukhopadhyay, S. Sengupta, T. Kar, C.J. Ennis, P.K. Rahman, Synthesis and characterization of PMMA‐cellulose nanocomposites by in situ polymerization technique, Journal of Applied Polymer Science 126(S1) (2012) E127-E134.
[61] S. Ramachandran, M. Sathishkumar, N.K. Kothurkar, R. Senthilkumar, Synthesis and characterization of graphene quantum dots/cobalt ferrite nanocomposite, IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2018, p. 012139.