研究生: |
林暐翰 Lin, Wei-Han |
---|---|
論文名稱: |
對數常態隨機變數之線性組合的分佈估計及其在無線系統之應用 Estimation for the Distribution of a Linear Combination of Lognormal RVs and its Application in Wireless Systems |
指導教授: |
胡殿中
Hu, Tien-Chung |
口試委員: |
呂理裕
趙一峰 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 37 |
中文關鍵詞: | 對數常態隨機變數之線性組合 、共頻道干擾 、對數常態分佈 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在無線通訊中,「共頻道干擾」乃訊號傳收表現的主要限制,對數常態隨機變數之線性組合(以下簡稱LCLN)則是用以描述共頻道干擾的一般化模型。因為目前尚未得知LCLN之分佈的具體公式,且數值計算方面相當困難的緣故,找出簡單而準確的近似解便顯得符合需求。在本論文中我們使用兩種方法來近似LCLN。一種是Minimax近似法,即利用Minimax的法則找到一個可近似LCLN之分佈的對數常態分佈。另一種方法同樣應用了Minimax的法則,但使用冪次-對數常態分佈來提升近似的精確度。本論文會提出數值範例以比較我們使用的方法和現有近似法之間的效果差異。
In wireless communications, the linear combination of lognormal random variables (LCLN) is a general model for the cochannel interference, which represents main limitation to radio link performance. Since the distribution function of LCLN is not known in the closed form and is difficult to compute numerically, simple and accurate approximations of the distribution are needed. In this paper we use two methods to approximate LCLN. One is Minimax approximation, which uses Minimax method to find a lognormal distribution approximating the distribution of LCLN. The other method also follows the rules of Minimax approximation, but uses a power lognormal distribution to improve the accuracy of approximation. Numerical examples are provided to compare the approximations we used here with the existing ones.
[1] F. Graziosi, M. Pratesi, M. Ruggieri and F.Santucci,
"A Multicell Model of Handover Initiation in Mobile
Cellular Networks", IEEE Trans. Veh. Technol., vol. 48,
pp. 802-814, 1999.
[2] D. Schleher, “Generalized Gram-Charlier Series with
application to the sum of lognormal variates,”
IEEE Trans. Inform. Theory, Mar. 1977, pp. 275-280.
[3] G. L. Stuber, Principles of Mobile Communications.
Kluwer Academic Publishers, 1996.
[4] M. D. Yacoub, Foundations of Mobile Radio Engineering,
CRC Press, Boca Raton, FL, USA, 1993
[5] J. D. Parsons and J. G. Gardiner, Mobile Communication
Systems. New York, NY: Halsted Press, 1989.
[6] M. Pratesi, F. Santiccu and F. Graziosi, “Generalized
moment matching for the linear combination of lognormal
RVs: application to outage analysis in wireless
systems,” IEEE Trans. Wireless. Commun., vol. 5,
pp.1122–1132, May 2006.
[7] N. C. Beaulieu and Q. Xie, “An optimal lognormal
approximation to lognormal sum distributions,” IEEE
Trans. Veh. Technol., vol. 53, pp.479–489, March 2004.
[8] D. Levy. Lecture “Introduction to Numerical Analysis”
Sept. 2010
[9] S¨uli E., Mayers D., An Introduction to Numerical
Analysis, Cambridge university press, Cambridge, UK,
2003.
[10] Z. Liu, J. Almhana and R. McGorman, “Approximating
lognormal sum distributions with power lognormal
distributions,” IEEE Trans. Veh. Technol., vol. 57,
pp. 2611–2617, July 2008.
[11] S. C. Schwartz and Y. S. Yeh, “On the distribution
function and moments of power sums with log–normal
components,” Bell Syst. Tech. J., vol.61, pp.1441–
1462, Sept. 1982.
[12] N. C. Beaulieu, A. A. Abu-Dayya, and P. J.
McLane, “Estimating the distribution of a sum
of independent lognormal random variables,”
IEEE Trans. Commun., vol. 43, pp.2869–2873, Dec. 1995.
[13] Z. Liu, J. Almhana, F. Wang and R. McGorman,
“Mixture lognormal approximations to lognormal sum
distributions,” IEEE Commun. Lett., vol. 11, pp. 711–
713, Sept. 2007.
[14] Y. Yeh and S. C. Schwartz, “Outage probability in
mobile telephonydue to multiple lognormal
interferers,” IEEE Trans. Commun., vol.COM-32,
pp. 380–388, Apr. 1984.
[15] L. F. Fenton, “The sum of lognormal probability
distributions in scatter transmission systems,”
IRE Trans. Commun. Syst., vol. CS-8, pp. 57–67,1960.
[16] M.P. Mishra, P.C. Saxena “Survey of channel
allocation algorithms research for cellular systems”,
International Journal of Networks and Communications,
2012
[17] W. Tranter, K. Shanmugan, T. Rappaport, K. Kosbar,
Principles of Communication Systems Simulation with
Wireless Applications, Prentice Hall Press Upper
Saddle River, NJ, USA , 2003
[18] N. C. Beaulieu, A. A. Abu-Dayya, and
P. J. McLane, “Estimating the distribution of a sum
of independent lognormal RV’s,” Queen’s University,
Kingston, Ontario, Canada, Tech. Rep. STR9402, 1994.
[19] N. C. Beaulieu and F. Rajwani, “Highly accurate
simple closed-form approximations to lognormal sum
distributions and densities,” IEEE Commun. Lett.,
vol. 8, no. 12, pp. 709–711, Dec. 2004.
[20] J. A. Nelder and R. Mead, “A simplex method for
function minimization,”Comput. J., vol. 7, no. 4, pp.
308–313, 1965.