簡易檢索 / 詳目顯示

研究生: 賴耀成
Lai, Yao Cheng
論文名稱: 奈米碳管複合材:熱電與電磁波屏蔽之應用
Carbon nanotubes based composites: Applications of thermoelectric power and electromagnetic shielding
指導教授: 徐文光
Hsu, Wen Kuang
口試委員: 郭信良
呂昇益
陳學仕
林樹均
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 71
中文關鍵詞: 奈米碳管熱電電磁波屏蔽多孔複合材二氧化鈦
外文關鍵詞: Carbon nanotubes, Thermoelectricity, Electromagnetic shielding, Porous composite, Titanium dioxide
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米碳管具有高穩定性、高比表面積與高導電性等特性,相當適合作為導電複合材之填充物。本文旨在奈米碳管複合材應用之研究,其內容分為多壁奈米碳管/二氧化鈦之熱電性質與多壁奈米碳管/乙基纖維素多孔複合材之電磁波屏蔽。二氧化鈦之導電率藉由多壁奈米碳管提升電子自由路徑而提升,並且碳摻雜之二氧化鈦的電子有效質量上升導致Seebeck係數提升,最後位於晶界之奈米碳管作為聲子散射中心,降低熱導率。因此,0.1wt%多壁奈米碳管ZT於室溫下提升了7380%。冷凍乾燥法製備之高重量百分比(50wt%)多壁奈米碳管/乙基纖維素多孔複合材有別於一般高導電率塊材對於電磁波呈現低反射率與高吸收率之特性。孔洞結構對此現象有三個貢獻。第一,電磁波可進入材料內部,降低反射率。第二,增加材料內部的散射,增加行進路徑。最後,提升比表面積,增加界面極化。其中,最後兩者提升吸收率。


    Carbon nanotubes (CNTs) which have high stability, specific surface area, and conductivity are suitable for conductive composite. This research discuss the application of carbon nanotubes composite as thermoelectric (multi-walled CNTs (MWCNTs)/TiO2) and electromagnetic shielding (porous composite of MWCNTs/ ethylcellulose) materials. Seebeck coefficient, according to Ioffe’s approximation, is inversely proportional to carrier density and decreases with doping. Here we find that incorporation of multi-walled carbon nanotubes into rutile TiO2 improves electrical conductivity and Seebeck coefficient at low filling fraction of tubes; the former is owing to lengthening of mean free path and doping modified effective mass for the latter. Tube-oxide mixing also causes significant phonon scattering at interfaces and reduced thermal conductivity is verified by promoted figure of merit. In contrast to conductive bulk materials, ethylcellulose porous composite with high MWCNTs weight percentage, which is synthesized by freeze-drying, exhibits low reflectance and high absorbance. The contribution of porous structure can be sorted into three mechanisms. First, electromagnetic wave is able to penetrate into porous structure. It decreases the reflectance. Second, the increase of diffuse reflection expands the transport path. Third, the increment of specific surface area enlarges the interfacial polarizations. The latter two are contributed to the enhancement of absorbance.

    摘要 I Abstract II 誌謝 III Contents V List of Figures VIII List of Tables XII Chapter 1 Introduction 1 1-1 Introduction of carbon nanotubes 1 1-1-1 Structure of carbon nanotubes 1 1-1-2 Electronic properties of Carbon Nanotubes 3 1-1-3 Mechanical property of carbon nanotubes 8 1-2 Introduction of thermoelectric 9 1-3 Thermoelectric properties of TiO2 13 1-4 Spark plasma sintering 14 1-4-1 Spark-plasma-sintered carbon nanotubes 16 1-4-2 Spark-plasma-sintered carbon nanotubes composite 18 1-5 The first principle calculation 19 1-5-1 Density functional theory 19 1-5-2 DFT+U 20 1-6 Electromagnetic shielding 22 1-6-1 Mechanism of electromagnetic shielding 22 1-5-2 Mechanism of permittivity 28 1-6 Freeze-drying method 30 Chapter 2 Motivation 33 2-1 Carbon nanotubes enhanced Seebeck coefficient and power factor of rutile TiO2 33 2-1 Motivation of MWCNTs/ethylcellulose porous composite's electromagnetic shielding property 35 Chapter 3 Experimental 37 3-1 Carbon nanotubes enhanced Seebeck coefficient and power factor of rutile TiO2 37 3-2 Production and electromagnetic shielding of porous MWCNTs/ethylcellulose composites 38 Chapter 4 Results and discussion 40 4-1 Results of Carbon nanotubes enhanced Seebeck coefficient and power factor of rutile TiO2 40 4-2 Electromagnetic shielding of MWCNTs/ethylcellulose porous composites 49 Chapter 5 Conclusions 61 Chapter 6 Reference 62

    [1] H. Kroto, Rev. Mod. Phys. 1997, 69, 703.
    [2] R. F. Curl, Rev. Mod. Phys. 1997, 69, 691.
    [3] S. Iijima, T. Ichihashi, Nature 1993, 363, 603.
    [4] J.-Y. Liao, B.-X. Lei, H.-Y. Chen, D.-B. Kuang, C.-Y. Su, Energy Environ. Sci. 2012, 5, 5750.
    [5] P. Roy, S. Berger, P. Schmuki, Angew. Chemie Int. Ed. 2011, 50, 2904.
    [6] M. Law, L. E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, P. Yang, J. Phys. Chem. B 2006, 110, 22652.
    [7] T. W. Odom, J.-L. Huang, P. Kim, C. M. Lieber, Nature 1998, 391, 62.
    [8] J. W. G. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, Nature 1998, 391, 59.
    [9] D. V Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, J. M. Tour, Nature 2009, 458, 872.
    [10] S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties, Wiley, 2004.
    [11] R. Saito, D. Gene, M. Dresselhaus, Physical Properties of Carbon Nanotubes, London : Imperial College Press, 1998.
    [12] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, Rev. Mod. Phys. 2009, 81, 109.
    [13] A. Feher, S. Feodosyev, I. Gospodarev, O. Kotlyar, K. Kravchenko, E. Manzhelii, E. Syrkin, Superlattices Microstruct. 2013, 53, 55.
    [14] J. C. Slonczewski, P. R. Weiss, Phys. Rev. 1958, 109, 272.
    [15] M. S. Dresselhaus, G. Dresselhaus, J. C. Charlier, E. Hernández, Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci. 2004, 362, 2065.
    [16] J.-Y. Raty, G. Galli, C. Bostedt, T. W. van Buuren, L. J. Terminello, Phys. Rev. Lett. 2003, 90, 37401.
    [17] L. Yanhong, W. Dejun, Z. Qidong, Y. Min, Z. Qinglin, J. Phys. Chem. B 2004, 108, 3202.
    [18] N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 1992, 68, 1579.
    [19] J. W. Mintmire, B. I. Dunlap, C. T. White, Phys. Rev. Lett. 1992, 68, 631.
    [20] L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, M. L. Cohen, Phys. Rev. Lett. 1996, 76, 971.
    [21] C.-H. Kiang, M. Endo, P. M. Ajayan, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. Lett. 1998, 81, 1869.
    [22] L. Kim, E. Lee, S.-J. Cho, J. S. Suh, Carbon N. Y. 2005, 43, 1453.
    [23] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, Phys. Rev. Lett. 2006, 97.
    [24] Q.-H. Yang, S. Bai, J.-L. Sauvajol, J.-B. Bai, Adv. Mater. 2003, 15, 792.
    [25] A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, M. M. J. Treacy, Phys. Rev. B 1998, 58, 14013.
    [26] C. Li, T.-W. Chou, Phys. Rev. B 2004, 69, 73401.
    [27] J. P. Lu, Phys. Rev. Lett. 1997, 79, 1297.
    [28] R. S. Ruoff, D. C. Lorents, Carbon N. Y. 1995, 33, 925.
    [29] T. Ozaki, Y. Iwasa, T. Mitani, Phys. Rev. Lett. 2000, 84, 1712.
    [30] D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert, K. A. Smith, R. E. Smalley, Appl. Phys. Lett. 1999, 74, 3803.
    [31] M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, Science (80-. ). 2000, 287, 637.
    [32] B. I. Yakobson, C. J. Brabec, J. Bernholc, Phys. Rev. Lett. 1996, 76, 2511.
    [33] W. E. Duncanson, C. A. Coulson, Proc. Phys. Soc. Sect. A 1952, 65, 825.
    [34] G. Overney, W. Zhong, D. Tománek, Zeitschrift für Phys. D Atoms, Mol. Clust. 1993, 27, 93.
    [35] T. J. Seebeck, Der, Abhandlungen der Deut Schen Akad. Berlin, Wissenshafften zu 1823, 265, 1822.
    [36] J. C. A. Peltier, Ann. Chim. Phys. 1834, 56, 371.
    [37] W. Thomson, Trans. R. Soc. Edinburgh 1849, 16, 541.
    [38] H. Kong, Thermoelectric Property Studies on Lead Chalcogenides, Double-Filled Cobalt Tri-Antimonide and Rare Earth-Ruthenium-Germanium, University Of Michigan, 2008.
    [39] W.-T. Chen, Effect of Electric Current Stressing on Interfacial Reactions at Soldered Junctions of Thermoelectric Modules, National Tsing Hua university, 2010.
    [40] E. Altenkirch, Phys. Zeitschrift 1909, 10, 560.
    [41] E. Altenkirch, Phys. Zeitschrift 1911, 12, 920.
    [42] G. J. Snyder, E. S. Toberer, Nat Mater 2008, 7, 105.
    [43] J. Tang, W. Wang, G.-L. Zhao, Q. Li, J. Phys. Condens. Matter 2009, 21, 205703.
    [44] L. Xu, M. P. Garrett, B. Hu, J. Phys. Chem. C 2012, 116, 13020.
    [45] A. R. Bally, E. N. Korobeinikova, P. E. Schmid, F. Lévy, F. Bussy, J. Phys. D. Appl. Phys. 1998, 31, 1149.
    [46] M. Batzill, E. H. Morales, U. Diebold, Phys. Rev. Lett. 2006, 96, 26103.
    [47] J. Domaradzki, Thin Solid Films 2006, 497, 243.
    [48] V. Gombac, L. De Rogatis, A. Gasparotto, G. Vicario, T. Montini, D. Barreca, G. Balducci, P. Fornasiero, E. Tondello, M. Graziani, Chem. Phys. 2007, 339, 111.
    [49] D. Li, H. Haneda, S. Hishita, N. Ohashi, N. K. Labhsetwar, J. Fluor. Chem. 2005, 126, 69.
    [50] Y. Su, S. Han, X. Zhang, X. Chen, L. Lei, Mater. Chem. Phys. 2008, 110, 239.
    [51] D. Mardare, G. I. Rusu, F. Iacomi, M. Girtan, I. Vida-Simiti, Mater. Sci. Eng. B 2005, 118, 187.
    [52] N. Todorova, T. Giannakopoulou, T. Vaimakis, C. Trapalis, Mater. Sci. Eng. B 2008, 152, 50.
    [53] F. Yakuphanoglu, M. Okutan, K. Korkmaz, J. Alloys Compd. 2008, 450, 39.
    [54] H. Kitagawa, T. Kunisada, Y. Yamada, S. Kubo, J. Alloys Compd. 2010, 508, 582.
    [55] J.-Y. Shin, J. H. Joo, D. Samuelis, J. Maier, Chem. Mater. 2012, 24, 543.
    [56] S. Bonanni, K. Aït-Mansour, W. Harbich, H. Brune, J. Am. Chem. Soc. 2012, 134, 3445.
    [57] Q. He, Q. Hao, G. Chen, B. Poudel, X. Wang, D. Wang, Z. Ren, Appl. Phys. Lett. 2007, 91, 052505.
    [58] N. Okinaka, T. Akiyama, ISIJ Int. 2010, 50, 1296.
    [59] N. O. and T. Akiyama, Jpn. J. Appl. Phys. 2006, 45, 7009.
    [60] E. Zapata-Solvas, D. Gomez-Garcia, A. Dominguez-Rodriguez, R. I. Todd, Sci. Rep. 2015, 5, 8513.
    [61] U. Anselmi-Tamburini, J. E. Garay, Z. A. Munir, Scr. Mater. 2006, 54, 823.
    [62] S. Grasso, B.-N. Kim, C. Hu, G. Maizza, Y. Sakka, J. Am. Ceram. Soc. 2010, 93, 2460.
    [63] Z. Shen, M. Johnsson, Z. Zhao, M. Nygren, J. Am. Ceram. Soc. 2002, 85, 1921.
    [64] D. V Quach, H. Avila-Paredes, S. Kim, M. Martin, Z. A. Munir, Acta Mater. 2010, 58, 5022.
    [65] R. Chaim, Mater. Sci. Eng. A 2007, 443, 25.
    [66] J. Hu, Z. Shen, Acta Mater. 2012, 60, 6405.
    [67] R. Marder, R. Chaim, C. Estournès, Mater. Sci. Eng. A 2010, 527, 1577.
    [68] S. D. Antolovich, H. Conrad, Mater. Manuf. Process. 2004, 19, 587.
    [69] R. Raj, M. Cologna, J. S. C. Francis, J. Am. Ceram. Soc. 2011, 94, 1941.
    [70] Z. A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, J. Mater. Sci. 2006, 41, 763.
    [71] K. Yang, J. He, P. Puneet, Z. Su, M. J. Skove, J. Gaillard, T. M. Tritt, A. M. Rao, J. Phys. Condens. Matter 2010, 22, 334215.
    [72] K. Yang, J. He, Z. Su, J. B. Reppert, M. J. Skove, T. M. Tritt, A. M. Rao, Carbon N. Y. 2010, 48, 756.
    [73] J. L. Li, G. Z. Bai, J. W. Feng, W. Jiang, Carbon N. Y. 2005, 43, 2649.
    [74] H. L. Zhang, J.-F. Li, K. F. Yao, L. D. Chen, J. Appl. Phys. 2005, 97.
    [75] F. Zhang, J. Shen, J. Sun, Y. Q. Zhu, G. Wang, G. McCartney, Carbon N. Y. 2005, 43, 1254.
    [76] D. HITCHCOCK, K. YANG, J. HE, A. M. RAO, Nano 2011, 06, 337.
    [77] X. Qi, Q. Bao, C. M. Li, Y. Gan, Q. Song, C. Pan, D. Y. Tang, Appl. Phys. Lett. 2008, 92.
    [78] H. Kwon, M. Estili, K. Takagi, T. Miyazaki, A. Kawasaki, Carbon N. Y. 2009, 47, 570.
    [79] G.-D. Zhan, J. D. Kuntz, J. Wan, A. K. Mukherjee, Nat Mater 2003, 2, 38.
    [80] E. L. Corral, H. Wang, J. Garay, Z. Munir, E. V Barrera, J. Eur. Ceram. Soc. 2011, 31, 391.
    [81] F. Inam, H. Yan, D. D. Jayaseelan, T. Peijs, M. J. Reece, J. Eur. Ceram. Soc. 2010, 30, 153.
    [82] C. Balázsi, Z. Shen, Z. Kónya, Z. Kasztovszky, F. Wéber, Z. Vértesy, L. P. Biró, I. Kiricsi, P. Arató, Compos. Sci. Technol. 2005, 65, 727.
    [83] J. Dusza, G. Blugan, J. Morgiel, J. Kuebler, F. Inam, T. Peijs, M. J. Reece, V. Puchy, J. Eur. Ceram. Soc. 2009, 29, 3177.
    [84] V. Yadav, S. P. Harimkar, Adv. Eng. Mater. 2011, 13, 1128.
    [85] A. Maiti, L. Reddy, F. Chen, L. Zhang, J. M. Schoenung, E. J. Lavernia, T. Laha, J. Compos. Mater. 2014, DOI 10.1177/0021998314541304.
    [86] Q. Zhang, W. Wang, J. Li, J. Zhu, L. Wang, M. Zhu, W. Jiang, J. Mater. Chem. A 2013, 1, 12109.
    [87] P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864.
    [88] W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133.
    [89] W. Koch, M. C. Holthausen, M. C. Holthausen, A Chemist’s Guide to Density Functional Theory, Wiley-Vch Weinheim, 2001.
    [90] W. Kohn, Phys. Rev. 1952, 87, 472.
    [91] L. M. Roth, J. Phys. Chem. Solids 1962, 23, 433.
    [92] W. Kohn, Rev. Mod. Phys. 1999, 71, 1253.
    [93] W. Kohn, J. M. Luttinger, Phys. Rev. 1957, 108, 590.
    [94] J. M. Luttinger, J. C. Ward, Phys. Rev. 1960, 118, 1417.
    [95] W. Kohn, Y. Meir, D. E. Makarov, Phys. Rev. Lett. 1998, 80, 4153.
    [96] M. Cococcioni, S. de Gironcoli, Phys. Rev. B 2005, 71, 35105.
    [97] J. P. Perdew, R. G. Parr, M. Levy, J. L. Balduz, Phys. Rev. Lett. 1982, 49, 1691.
    [98] A. I. Liechtenstein, V. I. Anisimov, J. Zaanen, Phys. Rev. B 1995, 52, R5467.
    [99] K. L. Kaiser, Electromagnetic Shielding, Taylor & Francis, 2005.
    [100] K. J. Vinoy, R. M. Jha, Boston, MA Kluwer Acad. Publ. 1996. 1996.
    [101] A. M. Badr, H. A. Elshaikh, I. M. Ashraf, J. Mod. Phys. 2011, 2011.
    [102] P. Robert, Electrical and Magnetic Properties of Materials, Artech House Publishers, 1988.
    [103] E. Nyfors, P. Vainikainen, Industrial Microwave Sensors, Artech House Norwood, 1989.
    [104] D. J. Bakewell, N. Vergara-Irigaray, D. Holmes, JSM Nanotechnol Nanomed 2013, 1, 1003.
    [105] W. Wang, Dielectric-Material-Assisted Microvae Heating in Freeze Drying, The Hong Kong university of science and technology, 2005.
    [106] V. Rindler, S. Lüneberger, P. Schwindke, I. Heschel, G. Rau, Cryobiology 1999, 38, 2.
    [107] C. Ratti, J. Food Eng. 2001, 49, 311.
    [108] S. R. Mukai, H. Nishihara, S. Shichi, H. Tamon, Chem. Mater. 2004, 16, 4987.
    [109] H.-W. Kang, Y. Tabata, Y. Ikada, Biomaterials 1999, 20, 1339.
    [110] S. S. L. Peppin, A. Majumdar, J. S. Wettlaufer, Proc. R. Soc. London A Math. Phys. Eng. Sci. 2009, 466, 177.
    [111] S. Deville, Adv. Eng. Mater. 2008, 10, 155.
    [112] C. M. Leroy, F. Carn, R. Backov, M. Trinquecoste, P. Delhaes, Carbon N. Y. 2007, 45, 2317.
    [113] S. Bianko, Rijeka, Croat. InTech 2011.
    [114] H. Wang, Y. Pei, A. D. LaLonde, G. J. Snyder, Adv. Mater. 2011, 23, 1366.
    [115] W. Xie, J. He, H. J. Kang, X. Tang, S. Zhu, M. Laver, S. Wang, J. R. D. Copley, C. M. Brown, Q. Zhang, T. M. Tritt, Nano Lett. 2010, 10, 3283.
    [116] Y. Zhang, M. L. Snedaker, C. S. Birkel, S. Mubeen, X. Ji, Y. Shi, D. Liu, X. Liu, M. Moskovits, G. D. Stucky, Nano Lett. 2012, 12, 1075.
    [117] M. Ohtaki, D. Ogura, K. Eguchi, H. Arai, J. Mater. Chem. 1994, 4, 653.
    [118] M. H. Lee, J.-S. Rhyee, M. Vaseem, Y.-B. Hahn, S.-D. Park, H. Jin Kim, S.-J. Kim, H. J. Lee, C. Kim, Appl. Phys. Lett. 2013, 102, 223901.
    [119] H. Lu, P. G. Burke, A. C. Gossard, G. Zeng, A. T. Ramu, J.-H. Bahk, J. E. Bowers, Adv. Mater. 2011, 23, 2377.
    [120] M. Ohtaki, H. Koga, T. Tokunaga, K. Eguchi, H. Arai, J. Solid State Chem. 1995, 120, 105.
    [121] D. Suh, D. Lee, C. Kang, I.-J. Shon, W. Kim, S. Baik, J. Mater. Chem. 2012, 22, 21376.
    [122] L. Xiong, J. Li, Y. Yu, Energies 2009, 2, 1009.
    [123] M. Backhaus-Ricoult, J. Rustad, D. Vargheese, I. Dutta, K. Work, J. Electron. Mater. 2012, 41, 1636.
    [124] A. Peigney, C. Laurent, E. Flahaut, R. R. Bacsa, A. Rousset, Carbon N. Y. 2001, 39, 507.
    [125] D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Nat Mater 2006, 5, 987.
    [126] A. L. M. Reddy, M. M. Shaijumon, S. R. Gowda, P. M. Ajayan, Nano Lett. 2009, 9, 1002.
    [127] Z. Wen, Q. Wang, Q. Zhang, J. Li, Adv. Funct. Mater. 2007, 17, 2772.
    [128] C. Wang, M. Waje, X. Wang, J. M. Tang, R. C. Haddon, Yan, Nano Lett. 2004, 4, 345.
    [129] K. H. An, W. S. Kim, Y. S. Park, J.-M. Moon, D. J. Bae, S. C. Lim, Y. S. Lee, Y. H. Lee, Adv. Funct. Mater. 2001, 11, 387.
    [130] E. Frackowiak, K. Metenier, V. Bertagna, F. Beguin, Appl. Phys. Lett. 2000, 77, 2421.
    [131] R. Verdejo, R. Stämpfli, M. Alvarez-Lainez, S. Mourad, M. A. Rodriguez-Perez, P. A. Brühwiler, M. Shaffer, Compos. Sci. Technol. 2009, 69, 1564.
    [132] Y. Yang, M. C. Gupta, K. L. Dudley, R. W. Lawrence, Nano Lett. 2005, 5, 2131.
    [133] K. Katuri, M. L. Ferrer, M. C. Gutiérrez, R. Jiménez, F. del Monte, D. Leech, Energy Environ. Sci. 2011, 4, 4201.
    [134] M. C. Gutiérrez, M. J. Hortigüela, J. M. Amarilla, R. Jiménez, M. L. Ferrer, F. del Monte, J. Phys. Chem. C 2007, 111, 5557.
    [135] A. Abarrategi, M. C. Gutiérrez, C. Moreno-Vicente, M. J. Hortigüela, V. Ramos, J. L. López-Lacomba, M. L. Ferrer, F. del Monte, Biomaterials 2008, 29, 94.
    [136] C. Lau, M. J. Cooney, P. Atanassov, Langmuir 2008, 24, 7004.
    [137] M. C. Gutierrez, Z. Y. Garcia-Carvajal, M. J. Hortiguela, L. Yuste, F. Rojo, M. L. Ferrer, F. del Monte, J. Mater. Chem. 2007, 17, 2992.
    [138] M. B. Bryning, D. E. Milkie, M. F. Islam, L. A. Hough, J. M. Kikkawa, A. G. Yodh, Adv. Mater. 2007, 19, 661.
    [139] F. Jin, H. Tong, J. Li, L. Shen, P. K. Chu, Surf. Coatings Technol. 2006, 201, 292.
    [140] M. Zhou, X. Zhang, J. Wei, S. Zhao, L. Wang, B. Feng, J. Phys. Chem. C 2011, 115, 1398.
    [141] P. Zhihua, P. Jingcui, P. Yanfeng, O. Yangyu, N. Yantao, Phys. Lett. A 2008, 372, 3714.
    [142] J.-M. Thomassin, C. Pagnoulle, L. Bednarz, I. Huynen, R. Jerome, C. Detrembleur, J. Mater. Chem. 2008, 18, 792.
    [143] W. Wunderlich, H. Ohta, K. Koumoto, Phys. B Condens. Matter 2009, 404, 2202.
    [144] C.-C. Li, C.-L. Lu, Y.-T. Lin, B.-Y. Wei, W.-K. Hsu, Phys. Chem. Chem. Phys. 2009, 11, 6034.
    [145] H.-C. Wen, C.-I. Hung, H.-J. Tsai, C.-K. Lu, Y.-C. Lai, W.-K. Hsu, J. Mater. Chem. 2012, 22, 13747.
    [146] Y. Lv, J. Willkomm, A. Steiner, L. Gan, E. Reisner, D. S. Wright, Chem. Sci. 2012, 3, 2470.
    [147] Y.-F. Li, C.-L. Lu, S.-L. Kuo, S.-C. Huang, B.-Y. Wei, S.-C. Chang, W.-K. Hsu, J. Mater. Chem. 2011, 21, 2178.
    [148] C. R. Aita, Appl. Phys. Lett. 2007, 90, 213112.
    [149] J.-G. Li, T. Ishigaki, X. Sun, J. Phys. Chem. C 2007, 111, 4969.
    [150] G. Liu, X. Yan, Z. Chen, X. Wang, L. Wang, G. Q. Lu, H.-M. Cheng, J. Mater. Chem. 2009, 19, 6590.
    [151] X.-X. Zou, G.-D. Li, J. Zhao, J. Su, X. Wei, K.-X. Wang, Y.-N. Wang, J.-S. Chen, Int. J. Photoenergy 2012, 2012, 720183.
    [152] S. Y. Lu, C. W. Tang, Y. H. Lin, H. F. Kuo, Y. C. Lai, M. Y. Tsai, H. Ouyang, W. K. Hsu, Appl. Phys. Lett. 2010, 96.
    [153] J. Hone, M. Whitney, C. Piskoti, A. Zettl, Phys. Rev. B 1999, 59, R2514.
    [154] Y. Zhang, X. L. Wang, W. K. Yeoh, R. K. Zheng, C. Zhang, Appl. Phys. Lett. 2012, 101.
    [155] J. Dong, W. Liu, H. Li, X. Su, X. Tang, C. Uher, J. Mater. Chem. A 2013, 1, 12503.
    [156] H. Chen, C. Yang, H. Liu, G. Zhang, D. Wan, F. Huang, CrystEngComm 2013, 15, 6648.
    [157] Q. Liu, J. Gu, W. Zhang, Y. Miyamoto, Z. Chen, D. Zhang, J. Mater. Chem. 2012, 22, 21183.
    [158] M. H. Al-Saleh, U. Sundararaj, Carbon N. Y. 2009, 47, 1738.
    [159] L.-S. Fu, J.-T. Jiang, C.-Y. Xu, L. Zhen, CrystEngComm 2012, 14, 6827.
    [160] X. Y. Huang, P. K. Jiang, C. U. Kim, J. Appl. Phys. 2007, 102.
    [161] I. J. Youngs, N. Bowler, K. P. Lymer, S. Hussain, J. Phys. D. Appl. Phys. 2005, 38, 188.
    [162] R. Bhandavat, W. Kuhn, E. Mansfield, J. Lehman, G. Singh, ACS Appl. Mater. Interfaces 2012, 4, 11.
    [163] Y. Qing, W. Zhou, F. Luo, D. Zhu, Carbon N. Y. 2010, 48, 4074.
    [164] A. Wadhawan, D. Garrett, J. M. Perez, Appl. Phys. Lett. 2003, 83, 2683.
    [165] J.-Y. Kim, T. Kim, J. W. Suk, H. Chou, J.-H. Jang, J. H. Lee, I. N. Kholmanov, D. Akinwande, R. S. Ruoff, Small 2014, 10, 3405.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE